CyberExcellence-2022

. ECOLE
B UCLouvain E“ POLYTECHNIQUE

SEMA o

Symbolic Execution toolchain for
Malware Analysis - Packing

By Christophe Crochet & Charles-Henry Bertrand Van Ouytsel & Khanh Huu The
Dam & Serena Lucca

Under the supervision of Axel Legay

'l UCLouvain

Malware analysis to defeat them all
Symbolic Execution you said ?
SEMA
Packing is kinda a problem

W hat's next ?

ECOLE
POLYTECHNIQUE
DE LOUVAIN

'l UCLouvain

Malware analysis to defeat them all
Symbolic Execution you said ?
SEMA
Packing is kinda a problem

W hat's next ?

ECOLE
POLYTECHNIQUE
DE LOUVAIN

Malware analysis to defeat them all

Malware

="Malware is a piece of code which changes the behavior of either the operating system
kernel or some security sensitive applications, without a user consent and in such a way
that it is then impossible to detect those changes using a documented features of the
operating system or the application (e.g. API)." - Introducing Stealth Malware Taxonomy

Malware Analysis

= Process to understand behavior of suspicious program

Malware analysis techniques

Static analysis

= Malware analysis based on syntaxic properties defining a signature

Example of tool: Yara

Dynamic analysis
= Malware analysis based on program execution

Example of tool: volatility

Malware analysis techniques problems

Static analysis
ULONGLONG uptime = GetTickCount();

e Easily tricked with variants Sleep(500000);
ULONGLONG uptimeBis = GetTickCount();
* With encryption/packing if ((uptimeBis - uptime)<500000 | | IsDebuggerPresent()){
MessageBox(NULL,"Hello world!", "", MB_OK);
} else{

char message[20] ="";

HINSTANCE hlib = LoadLibrary("msvcrt.dll");

MYPROC func = (MYPROC) GetProcAddress(hlib,
"strcat");

 Example: detecting string "I'm evil"

(func) (message, "I'm ");
(func) (message, "evil!l");
MessageBox(NULL, message, "", MB_OK);

Malware analysis techniques problems

Dynamic analysis
ULONGLONG uptime = GetTickCount();

 Anti-debugger Sleep(500000);
ULONGLONG uptimeBis = GetTickCount();
* Time constraints if ((uptimeBis - uptime)<500000 | | IsDebuggerPresent()) {
MessageBox(NULL,"Hello world!","", MB_OK);
. } else {

char* fl[2] = {"cat","str"};

char buf[10],message[20];

strcpy(buf, fl[1]);strcat(buf, fl[0]);

HINSTANCE hlib = LoadLibrary("msvcrt.dll");

MYPROC func = (MYPROC) GetProcAddress(hlib, buf);
(func) (message, "I'm "); (func) (message, "evilll");
MessageBox(NULL, message, "", MB_OK);

Example: detecting string "I'm evil"

Malware analysis techniques problems

Dynamic analysis

 Anti-debugge

'l UCLouvain

Malware analysis to defeat them all
Symbolic Execution you said ?
SEMA
Packing is kinda a problem

W hat's next ?

ECOLE
POLYTECHNIQUE
DE LOUVAIN

Symbolic Execution you said ?

* Program execution of all possible paths (in theory)
e Symbolic execution engine

e Symbolic memory store (SM)
* For symbolic value &
* Symbolic expression

 SMT solver use for satisfiability during path exection

SM :/
Post: True

-

SM :<x1:v
Post: True

1,.>

<

¢

(post/pre)
<INIT>
if (<KCONDITION>) {
<exit>
} else{
<P2>

}

SM :<x1:vl,.>
Post: <cond> =
False

SM :<x1:vl,.>
Post: <cond> =
True

<

<P2>

D¢

1

Symbolic Execution you said ?

@

* "Open-source binary analysis platform
for Python"

* Designs goals:

1.

2.
3.
4

Cross-architecture support
Cross-platform support

Multiple analysis paradigms support
Usability

(State of) The Art of War: Offensive Techniques in Binary Analysis

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Chrlstopher

Kruegel, Giovanni Vigna

Angr in a nutshell:

__ Machine code
for arch X
10011
poii11l —_}
11010
Software
— WEX
— representation
CLE loader SImVEX

Claripy solver

)

SimEngine

13

'l UCLouvain

Malware analysis to defeat them all
Symbolic Execution you said ?
SEMA
Packing is kinda a problem

W hat's next ?

14

ECOLE
POLYTECHNIQUE
DE LOUVAIN

SEMA

* Open-source project too !

e Build on top of Angr

 @Goals:
1. Malware detection
2. Malware classification
3. Collaborative works
4. System calls graph (SCDGs) based analysis

15

SEMA

SEMA in a nutshell:
1. SEMA-SCDGs
2. SEMA-Classifier
3. SEMA-FL

16

SEMA

SEMA in a nutshell:

* SEMA-SCDGs
Symbolic Execution SCDGs

 ELF & PE programs Sym e i _ signature
000 %
* Custom explorations techniques %_—'ll || ||
(CDFS & CBFS) =

* Track of executions paths with SCDGs

17

SEMA

SEMA in a nutshell:

 SEMA-Classifier
e Use SCDGs produced as sighature

conrinmmeta o) B | By
* Grapn mining moael (g 1 smm oty L

* SVM with graph kernel model

* Deep learning model

18

Standalone

Graph mining SCDGs signatures _,,2&

- E Malware
Symbolic Execution SCDGs + —> (families)
execution traces ﬁa l

- —I"D n u Classifier
inj I| || I| —»> — SVM - DL Maodel - wy
= . x’f
h@ * O

Cleanware

Software
binaries

‘ SEMA-SCDGs

SEMA-Classifier

19

SEMA

SEMA in a nutshell:

 SEMA-FL
* Trust server model

N clients with their own database

* Only deep learning model

* Homomorphic encryption for shared parameters

20

Adding Federating Learning

. wy Motation
Graph mining SCDGs signatures —Pﬁ = model parameters of client i
. i
Symbolic ~EXecution SCDGs > — - (s PR _ public key of client i (encryption)
execution traces skt
ooo Y = private key of client / (decryption)
Classifier i
] = = 'u'lﬂ I 5
' “\ —> I I I — - SVM - DL Model - wy ry " model parameters of client i encrypted
4 S with public key of client |
—_— D
Software - //] [\\ —1-9
binaries
‘ SEMA-SCDGs Cleanware
SEMA-Classifier
== 4 i{/{ " e - 4
S — —
U5 <« - > JB < - >UjB
] i Wy, SN D, BN
| : : A : |
Collaborator 1 v v Key - Collaborator 2 v Collaborator 3
i w1 ! i wa ! ?-I"pkg i w3 !
L (pkskT) L (pkeskd) L L (pOsk) |
T T T T 'UJ I}If"z e T T
1 y3
W pky ?""‘W’ P W pk,
.

T 2_‘ o
U.-‘p,f;._, uJPF-'-:

=0

21
Aggregator

'l UCLouvain

Malware analysis to defeat them all
Symbolic Execution you said ?
SEMA
Packing is kinda a problem

W hat's next ?

22

ECOLE
POLYTECHNIQUE
DE LOUVAIN

Packing is kinda a problem

What is packing ?

* Obfuscation technique use to hide original
program
* Formatting, compression, etc

e Stub routine to unpack the original code

* E.g: UPX, PE-packer, etc.

packer

Packing is kinda a problem

Concolic Execution

Idea = Concolic Execution with Symbion
* Execute concretly the unpacking routine

* Execute symbolically the original malware

Challenges:
* Find original entry point of the malware
e Synchronize the state after concrete execution

e Dealing with modified headers

25

Software for sandbox Manage concrete
analysis Sandbox - Windows VM execution

More concretly...

Cuckoo Server GDE Server

l e
[1%]
-

, Synchronize conrete and
Try to find OEP symbolic states Interface with remote
GDB server
N ¥
* Memory dumping for ,
multi-| ayer packer ::;:; — | Pre-Analysis Symizion 3 AvararTarget
Packed 10 + ‘ Main componant
e Header reconstruction binary S L
SR N SEMA]/
(1 K:. Send: OEP if found + other informations to SEMA

/ é‘\ Send: Address fo stop concrete execution to Symbion
I--_ / Receive: Synchronized state of desired address from Symbion

3 Send: Concrete output from steps to Symbion
Receive: Symbolic steps from Symbion

4 Send: Concrete output from command to Target 26
Receive: GOB command from Target

'l UCLouvain

Malware analysis to defeat them all
Symbolic Execution you said ?
SEMA
Packing is kinda a problem

What's next ?

27

ECOLE
POLYTECHNIQUE
DE LOUVAIN

W hat's next ?

 Extend federated learning to all models

e Support new types of programs (.NET, Java, Macros Excel, ...)
* Extend exploration techniques
« Manage packed programs

Concolicexecution

* Manage obfuscation techniques

* Many more

28

W hat's next ?

 Extend federated learning to all me

e Support new turs _ “

W hat's next ?

CyberExcellence-2022

. ECOLE
B UCLouvain E“ POLYTECHNIQUE

DE LOUVAIN

Toward Formal Specification
of QUIC attackers with IVy

By Christophe Crochet & Tom Rousseaux
Under the supervision of Axel Legay

'l UCLouvain

QUIC is the future
Methodology for the formal verification of QUIC
Previous work

Attacker model

ECOLE
POLYTECHNIQUE
DE LOUVAIN

'l UCLouvain

QUIC is the future
Methodology for the formal verification of QUIC

Previous work

Attacker model

ECOLE
POLYTECHNIQUE
DE LOUVAIN

QUIC is the future

QUIC: a new secure transport protocol
* |Intended to replace TCP
 RFC9000 = textual document

Importance to test compliance of QUIC to its specification

Formal verification versus interoperability tests

Application

Security

Frame
y K]

Packet
y |

Protection

QUIC, a protocol with innovative features

TCP + TLS

QUIC + O-RTT

e QUIC connection Client Server Client Server

TCP
Handshake

e QUIC multiplexing

TLS
* QUIC migration Handshake

Data
transfert

AL

* Extensibility

'l UCLouvain

QUIC, a protocol with innovative features
Methodology for the formal verification of QUIC
Previous work

Attacker model

ECOLE
POLYTECHNIQUE
DE LOUVAIN

000 |:>

Randomized and Network-centric Compositional testing

Frame Fra me

requirements

Packet 1

Frame Frame
p ()

Packet 2

Frame Frame
4 7

Frame
()

requirements

'l UCLouvain

QUIC, a protocol with innovative features
Methodology for the formal verification of QUIC
Previous work

Attacker model

ECOLE
POLYTECHNIQUE
DE LOUVAIN

What we done

e Update the model to RFC9000 (from draft 18)

* Errors found in every implementation
e Tested on 8 implementations

* Problems in the draft detected
* Ambuiguities

* Oneimplementation improved

Main problems founds

Q Violation of the specification

Q Feature not implemented

Q Internal errors and crashes

Q Problem in the draft

10

11

'l UCLouvain

QUIC, a protocol with innovative features
Methodology for the formal verification of QUIC
Previous work

Attacker model

ECOLE
POLYTECHNIQUE
DE LOUVAIN

Attack model

* Instead of formally specify QUIC protocol from RFC9000

 We formally specify "Man in the Middle" attacker of QUIC

Difficulties:

* No clear specification

* Localhost

e Usually attacks are very specific

12

Attack model

Man in the Middle

e MitM =
e attacker placed between communication(s)
e Able to listen/alter the communication(s)
* Endpoints are not conscious of the attacker

Client Server

Reflection

Control attacks

connection

Victim

14

Man in the middle: Template model

Behavior 1

Behavior 2

Behavior 3

Behavior N

Specific

requirements
enrichments

lvy
process
Pre-model

7 E
e B

Ivy

orocess Custom MitM

model/implementation

GUI

15

Man in the middle: Template model

Simulator

Normal behaviour

Application Syscalls—» Kernel (—)1% <>

Device

Network simulator

Application Syscalls—», Kernel
%,
Q
%H’
%

Sim interface [€«—>»

Simulator
network

17

Simulator

Sim interface [«——» Simulator
network

18

Simulator

W hat's next ?

 Develops more complex templates
e Extend the methodology to other protocol (i.e DNS)

* Improve the GUI for easier configuration

* Many more

20

21

'l UCLouvain

Any question ?

Thanks for your attention

ECOLE
POLYTECHNIQUE
DE LOUVAIN

