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Malware analysis to defeat them all

Malware

="Malware is a piece of code which changes the behavior of either the operating system
kernel or some security sensitive applications, without a user consent and in such a way
that it is then impossible to detect those changes using a documented features of the
operating system or the application (e.g. API)." - Introducing Stealth Malware Taxonomy

Malware Analysis

= Process to understand behavior of suspicious program



Malware analysis techniques

Static analysis

= Malware analysis based on syntaxic properties defining a signature

Example of tool: Yara

Dynamic analysis
= Malware analysis based on program execution

Example of tool: volatility



Malware analysis techniques problems

Static analysis
ULONGLONG uptime = GetTickCount();

e Easily tricked with variants Sleep(500000);
ULONGLONG uptimeBis = GetTickCount();
* With encryption/packing if ((uptimeBis - uptime)<500000 | | IsDebuggerPresent()){
MessageBox(NULL,"Hello world!", "", MB_OK);
} else{

char message[20] ="";

HINSTANCE hlib = LoadLibrary("msvcrt.dll");

MYPROC func = (MYPROC) GetProcAddress(hlib,
"strcat");

 Example: detecting string "I'm evil"

(func) (message, "I'm ");
(func) (message, "evil!l");
MessageBox(NULL, message, "", MB_OK);




Malware analysis techniques problems

Dynamic analysis
ULONGLONG uptime = GetTickCount();

 Anti-debugger Sleep(500000);
ULONGLONG uptimeBis = GetTickCount();
* Time constraints if ((uptimeBis - uptime)<500000 | | IsDebuggerPresent()) {
MessageBox(NULL,"Hello world!","", MB_OK);
. } else {

char* fl[2] = {"cat","str"};

char buf[10],message[20];

strcpy(buf, fl[1]);strcat(buf, fl[0]);

HINSTANCE hlib = LoadLibrary("msvcrt.dll");

MYPROC func = (MYPROC) GetProcAddress(hlib, buf);
(func) (message, "I'm "); (func) (message, "evilll");
MessageBox(NULL, message, "", MB_OK);

Example: detecting string "I'm evil"




Malware analysis techniques problems

Dynamic analysis

 Anti-debugge
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Symbolic Execution you said ?

* Program execution of all possible paths (in theory)
e Symbolic execution engine

e Symbolic memory store (SM)
* For symbolic value &
* Symbolic expression

 SMT solver use for satisfiability during path exection
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Symbolic Execution you said ?
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* "Open-source binary analysis platform
for Python"

* Designs goals:

1.

2.
3.
4

Cross-architecture support
Cross-platform support

Multiple analysis paradigms support
Usability

(State of) The Art of War: Offensive Techniques in Binary Analysis

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Chrlstopher

Kruegel, Giovanni Vigna




Angr in a nutshell:

__ Machine code
for arch X
10011
poii11l —_}
11010
Software
— WEX
— representation
CLE loader SImVEX

Claripy solver

)

SimEngine
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SEMA

* Open-source project too !

e Build on top of Angr

 @Goals:
1. Malware detection
2. Malware classification
3. Collaborative works
4. System calls graph (SCDGs) based analysis
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SEMA

SEMA in a nutshell:
1. SEMA-SCDGs
2. SEMA-Classifier
3. SEMA-FL
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SEMA

SEMA in a nutshell:

* SEMA-SCDGs
Symbolic Execution SCDGs

 ELF & PE programs Sym e i _ signature
000 %
* Custom explorations techniques %_—'ll || ||
(CDFS & CBFS) =

* Track of executions paths with SCDGs
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SEMA

SEMA in a nutshell:

 SEMA-Classifier
e Use SCDGs produced as sighature

conrinmmeta o) B | By
* Grapn mining moael (g 1 smm oty L

* SVM with graph kernel model

* Deep learning model
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Standalone

Graph mining SCDGs signatures _,,2&
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SEMA

SEMA in a nutshell:

 SEMA-FL
* Trust server model

N clients with their own database

* Only deep learning model

* Homomorphic encryption for shared parameters
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Adding Federating Learning
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Packing is kinda a problem

What is packing ?

* Obfuscation technique use to hide original
program
* Formatting, compression, etc

e Stub routine to unpack the original code

* E.g: UPX, PE-packer, etc.

packer




Packing is kinda a problem




Concolic Execution

Idea = Concolic Execution with Symbion
* Execute concretly the unpacking routine

* Execute symbolically the original malware

Challenges:
* Find original entry point of the malware
e Synchronize the state after concrete execution

e Dealing with modified headers
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Software for sandbox Manage concrete
analysis Sandbox - Windows VM execution

More concretly...

Cuckoo Server GDE Server

l e
[ 1% ]
-

, Synchronize conrete and
Try to find OEP symbolic states Interface with remote
GDB server
N ¥
* Memory dumping for ,
multi-| ayer packer ::;:; — | Pre-Analysis Symizion 3 AvararTarget
Packed 10 + ‘ Main componant
e Header reconstruction binary S L
SR N SEMA ]/
(1 K:. Send: OEP if found + other informations to SEMA

/ é‘\ Send: Address fo stop concrete execution to Symbion
I--\\_ / Receive: Synchronized state of desired address from Symbion

3 Send: Concrete output from steps to Symbion
Receive: Symbolic steps from Symbion

4 Send: Concrete output from command to Target 26
Receive: GOB command from Target
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W hat's next ?

 Extend federated learning to all models

e Support new types of programs (.NET, Java, Macros Excel, ...)
* Extend exploration techniques
« Manage packed programs

Concolicexecution

* Manage obfuscation techniques

* Many more
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W hat's next ?

 Extend federated learning to all me

e Support new turs _ “



W hat's next ?
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QUIC is the future

QUIC: a new secure transport protocol
* |Intended to replace TCP
 RFC9000 = textual document

Importance to test compliance of QUIC to its specification

Formal verification versus interoperability tests

Application

Security

Frame
y K]

Packet
y |

Protection



QUIC, a protocol with innovative features

TCP + TLS

QUIC + O-RTT

e QUIC connection Client Server Client Server

TCP
Handshake

e QUIC multiplexing

TLS
* QUIC migration Handshake

Data
transfert

AL

* Extensibility
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000 |:>

Randomized and Network-centric Compositional testing

Frame Fra me

requirements

Packet 1

Frame Frame
p ()

Packet 2

Frame Frame
4 7
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What we done

e Update the model to RFC9000 (from draft 18)

* Errors found in every implementation
e Tested on 8 implementations

* Problems in the draft detected
* Ambuiguities

* Oneimplementation improved



Main problems founds

Q Violation of the specification

Q Feature not implemented

Q Internal errors and crashes

Q Problem in the draft

10



11

'l UCLouvain

QUIC, a protocol with innovative features
Methodology for the formal verification of QUIC
Previous work

Attacker model

ECOLE
POLYTECHNIQUE
DE LOUVAIN




Attack model

* Instead of formally specify QUIC protocol from RFC9000

 We formally specify "Man in the Middle" attacker of QUIC

Difficulties:

* No clear specification

* Localhost

e Usually attacks are very specific
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Man in the Middle

e MitM =
e attacker placed between communication(s)
e Able to listen/alter the communication(s)
* Endpoints are not conscious of the attacker

Client Server

Reflection

Control attacks

connection

Victim
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Man in the middle: Template model

Behavior 1

Behavior 2

Behavior 3

Behavior N

Specific

requirements
enrichments

lvy
process
Pre-model

7 E
e B

Ivy

orocess Custom MitM

model/implementation

GUI
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Man in the middle: Template model




Simulator

Normal behaviour

Application Syscalls—» Kernel (—)1% <>

Device

Network simulator

Application Syscalls—», Kernel
%,
Q
%H’
%

Sim interface [€«—>»

Simulator
network
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Simulator

Sim interface  [«——» Simulator
network
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Simulator




W hat's next ?

 Develops more complex templates
e Extend the methodology to other protocol (i.e DNS)

* Improve the GUI for easier configuration

* Many more
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