Date 13/05/2024

Challenge 01 "Automation of
cybersecurity verification for cyb
physical systems”

Challenge 01 Working Gro

Guillaume NGuyen,
Martin Vivian, UC
Denis Darquenn
Christophe Cro

igital P :
agl ia Wall1°meh
A recnerche
7 erwal
SPW

‘.

https://cyberwal.be/
https://cyberecellence/

Agenda e
|

15:30-15:50 Improvements for stateful fuzzing Martin Vivian
(UCLouvain)

15:50-16:10 Identification of Cyber Physical System (CPS) & Orchestration of fuzzing Guillaume
testing Nguyen
(Unamur)

16:10-16:30 Automated cybersecurity testing with genetic algorithms Denis
Darquennes,

Philippe
Massonet
(CETIC)

16:30-16:50 Verification of protocols via PFV (Protocol Formal Verification) Christophe
Crochet/John
Aoga,
UCLouvain

Challenge 01 "Automation of cybersecurity verification for cyber physiczi.
systems" il

* Summary of the Challenge:
* Penetration testing: still a very manual process, requires cybersecurity experts

* Ambition: automate (partly) the creation of penetration tests to make penetration tests
more accessible to companies (SMEs, large companies)
* Research Challenges:

o Automatic generation of functional cybersecurity tests (security architecture), use of
different generation techniques (to compare) for penetration tests:

o Fuzzing techniques,
o Generation of tests by genetic mutation

o Generating tests from models

o Partial automation in the form of assistance with the creation process and definition of
penetration tests.

“Test Harness pattern” - Generation

i Can be
Fuzzing Oracle Generated
Test case
Test Test Data Eﬁgiﬁfd
White box
4) compares
Grey box 1) reads) p
Black box
Penetration tests e e
Functional tests Monitor
3) collects 2) invokes SUT
Test report 5) writes
Actual

results

Overview of research problems

| Whitebox | Greybox | Black box mm

Improvements for stateful
fuzzing

Identification of Cyber Physical X X X
System (CPS) & Orchestration
of fuzzing testing

Automated cybersecurity X X
testing with genetic

algorithms

Vérification of protocols via X X

PFV (Protocol Formal
Verification)

Improvements for stateful fuzzing

Martin Vivian, UCLouvain

digital

W, el

Re m i n d e r Z.¢yberwal
Stateful fuzzing
Stateless fuzzing
Fuzzing on State Machine ° o
M3 ° State machine . -
°/Mlv—>e—/’°”' ~ L)
[oy
Each message have their grammar d State machine

Order of the message in this example, we must send M1' before M2' to reach S3

\ Template of message

for each state transition
MITM

-

Test machine

.-

wallo

Tool Introduction hvmerua

|

i

43

(o}

i Autoruz Data in XML format

Proxy Server | Original FSM | Fuzzing Engine
Application Protocol Traffic

et Proy Port | <Tece data (copy- <Trace></Trace> : session
: Stop Proxy <Output>32323020412076657279207761726d2077656c636F6d paStIng) <|nput></|nput> . da‘ta

Birch Clustering ::v:: <Input>5553455220616e6f6e796d6f75730d0a</Input> <Output></0utput> : data.
Reverse Input/Qutput Traffic Direction = i S776F72640a</0ut
[[Fuzzquandam]v

FuzzingRandom

FuzzingGroup

Randominsert <Input>5245545220726e4d626a316d76334F2e7478740d0a</Input>

lciesseEenorh <Output>35353020506C6561736520757365205041535620696e7374656164206f6620504F52542e0: In|t|a”y Start '[O Improve AutOfUZZ .
Similarity Threshold |06] . .
Pre-Template Cluster ratio [0.1 | <Imput>S15545540d0ac/nput> https://sourceforge.net/projects/autofuzz/
Header Size 400 </Trace><Trace>

<Output>32323020412076657279207761726d2077656c636f6d Data from flle Fina"y keep UI and modify the reSt

<Input>5553455220757365720d0a</Input>

<Output>35333020496e76616C696420757365726e616d650a<,

26e616d65206f72207(776f72640a</Outpu

>

Template

[|)) | [Load Agp. Traffic ||
. - | Construct... Calculate ... Proxy for Fuzzing - - .
| StopRecording... || JL L [StopFuzzing | [Expert App.Traf.. ||

[Start Recording.. Start Fuzzing

Clear Screen

https://sourceforge.net/projects/autofuzz/

Process of the Tool

Network
Traces

Model Generator

f

» P
L

reprocessing}

Clustering

L

e = o &
Template
Generator

FSM

Generator
.~

Template example Siberwal
1:FA++—
2:FE6B++

|
I Receive

h 4

v

: to server
v

to client

:message
I
Fuzzer ,
Templates !
_— Find Change
[Template FSM State ¢
l |
FSM | ,
|
Message | , Message
|
v

Build State Machine

digital

A 1|
4gyberwal

Integrated tool for
FSM

FlexFringe :
https://github.com/tud
elft-cda-lab/FlexFringe

Start Recording ...
Stop Recording...

Construct...

Start Fuzzin Load App. Traffic
Calculate ... Proxy For Fuzzing - ke

Stop Fuzzing Export App. Traf...

Clear Screen

Clustering for State Machine

Gather similar networking messages from the data to build a fsm based on this cluster

1) Preprocessing:
Find highest variable part (like crc, session id...) and don’t take in account for clustering
Example : FE+++++++A +++ => “+” indicate high variablility

2) Header separation (clustering on header) :
Choose a header length for the clustering
Example : header = 4 for frame “AABBCCDD” => header part is AABB
Create separate cluster for size below
Create a separate cluster for unclusterized data

3) Algorithm used
Hiearchical Clustering algorithm :
(BirchLeaf clustering) : https://github.com/sbobek/smiling/blob/master/demo/src/main/java/smile/demo/vqg/BIR

Z'¢yberwal

Link between State Machine and cluster

We are at the state 4
We receive an ouptut
message that match the

cluster ID 2 then we go to
the state 5

Cluster Id 2 should be
represented by the template
: AF++-C—++

And the message received
should be AFEBFCEEAA

If output are fuzz then the
message will be fuzzed
following the corresponding
template

Template and Fuzzing Strategy

Template :

— Since the fuzzer is in MitM we can modify the messages by following a template

— We need before to calculate the template for each cluster

— Distinction between constant value, strong and weak variable with Xi2 (distribution for each
position in the frame).

Strategy
— Don't fuzz constant, less fuzzing for highest variable and high fuzzing for weak variable.
Template example: [fB++++=—— (red no fuzzing, yellow low probability to be fuzzed and

green higher probabilitv. _
— FUZZIng Functlon FuzzingRandom v

FuzzingRandem

FuzzingGroup
Randominsert

— Possibility to not fuzz all frame, select states to fuzz.

Information :
Start Fuzzing Load App. Traffic

DIStInCtlon beween ConStant Value’ Strong Al [start Recordng... Construct.., Calculate ... Proxy For Fuzzhg Clear Screen

Stop Recording... Stop Fuzzing Export App. Traf...

/ i

FTP case study &igyberwal

- First case study to test our implementation
- Test on FTP server implementation (Open and compact FTP server version 1.2)

- https://sourceforge.net/projects/open-ftpd/files/open-ftpd/

Results) l
- Our tool was able to reproduce the crash from the papers ID [Dir|Size|Template
The insertion of "/r", "/n" or a space symbol in the middle of the parameters could crash 1000| s | 24 |s553455220-+-+-+-+-+0d0a
whole template variable part (i.e. sending a command without a parameter) could also | ooy & | ot [ooiieseaa s i1 o oo
1001| S | 28 |5041535320++++++++++++++0d0a
1002| S | 30 |4d4b4420+++++++++++4+++++++0d0a
1007| S 8 |51564954
1008| S | 42 (5245545220-4-+-4-#ocot-tou-+-+2eT7478740d0a
1009| S | 42 (44454c4520-+-——4---—--—-+-+-+-+2e7478740d0a
1010] S | 12 [4c4953540d0a
- a ? 2 0 C | 360 (3232302d202a2a2a2a2a2a2a2a2aZa2a?a2a2a2aa. . .
< A b N 1 | €| 78 |353330204c6£67696e206£722050617373776£7264. . .
e LN 1 C | 54 |353330204c6£67696e20696e636172726563742e20. ..
B 5 C | 86 |3535302022-#-+-+-+-—-+-+---+-+2e7478742220. ..
i ‘ < 6 C | 110 |323530204368616e67656420746120646972656374. . .
{ -~ » : \ 6 C | 68 |323530204368616e67656420746120646972656374. . .
[¥ 7 | C | 126 |3135302041£70656e696e672062696e617279206461. . .
/) LY 7 C | 102 |313530204170656e696e672042696e61 7279206461 . . .
/ » 8 C | 50 |323236205472616e73666572742043616d4706c6574. . .
é

https://sourceforge.net/projects/open-ftpd/files/open-ftpd/

FSM : FTP

Template : FTP

ID |Dir|Size|Template

1000
1000
1001
1001
1002
1007
1008
1009
1010
0
1
1

L B I+ T - T

-

O wmunmaon-

w

L4 T T]

nanonaa:

24
26
26
28
30
8
42
42
12
360
78
54
86
110
68
126
102
50

5553455220-+-+-+-+-+0d0a
5563455220-----+-+-+-+0d0a
5041535320-+-+-+-+-+-+0d0a
5041535320+ +++++++++++++0d0a
4d4ba420++++++++++++++++++0d0a

s

51554954

5245545220 -+-+-4-#---#-+---+-+2eT478740d0a
44454c4520-4---t-mccmc-t-+-+-+2eT478740d0a
4c4953540d0a

3232302d202a2a2a2a2a2a2aZaZa2a2aZa2a2alala. .
353330204c6167696e206£722050617373776£7264. ..
353330204c6167696e20696e636£72726563742e20. . .

3535302022+ -+ -+-+=-=+-+---+-+2aT4T78T742220. . .
323530204368616e67656420T46£206469T72656374. . .
323530204368616e67656420T46£20646972656374. . .
3135302041£70656e696e672062696e617279206d61 . . .
3135302041 70656e696e672042696e617279206d61 . . .
323236205472616e7366657T2742043616d7T06cE6574. ..

Application to Industrial drone Case Study

Industrial protocol caracterised by

— CRC QO

Drone reply

— Session ID I
. Server |« -
— DateTime -'%r station

— Telemetric, IOgS packets Control commands
— Header

— Black-box
— No always tuple input-output
— No text-interpretable protocol

Results on the case study

— Relevant State machine
— Relevant template to identify cluster and reusable for fuzzing

— Tools is enough good to create separate state for the drone commands
— For example, each time that we start the motors we go to the state 9.
— It gives the possibility to only fuzz specific control command without modifying
telemetries packet and get the good fuzzing template.

Attempt on the RTSP Protocol

- RTSP (Real Time Streaming Protocol) https://github.com/rgaufman/live555
- Protocol inside Profuzzbench : https://aithub.com/profuzzbench/profuzzbench

- When we launch Profuzzbench we find crash on RTSP

- But when we try to replay the frames we don't find the bugs

- Reason they fixe a session id in the code for the reproducible of results
- But that introduce a crash

https://github.com/rgaufman/live555
https://github.com/profuzzbench/profuzzbench

Next Steps and progress in maturity of results

— Test and adapt the tool for others case studies

— Improvement the quality of the template by detecting type (string, integer...)
— Find a heuristic to know in advance the number of clusters

— Detection about the dependencies between the messages (increment)

— Possibility to correct the model during the fuzzing phases

— Compare with dynamic execution

Test-based classification framework for CPS

Guillaume Nguyen, UNamur

Overview Zeyberwal

The survey is stuck due to a lack of responses from The research intended to identify the challenges related
. industrial actors. We hoped to get at least 25 . to creating a legally compliant CPS using tests based on

answers and we only have 8. official EU material. However, the final contribution of
the paper shifted from the creation of a matching tool for
industrial actors to help them identify relevant laws and
We are currently designing a tool meant to be related (technical) material to a methodology critique of
. embedded in a computer which could be carried to the current legislation landscape.

perform onsite fuzzing. This tool would be used

through a visual interface based on models and

would be able to communicate on many channels.

Challenges of
creating a legally
compliant CPS

Survey on CPS
in industries

Tool for fuzzing
CPS on the go

15/12/2022 9/02/2023 28/08/2023 18/04/2024
CyberExcellence - 1st poster WGIS’23 Doctoral Symposium Rejection of paper
Presentation on @SPLC ‘23 Tokyo @FSE ‘24 Brasil
fuzzing for CPS (ROS)

Next steps - Survey

l . l -
ime s sting
ose hour

"
<

5 3
P «"

Preliminary suvey

Research questions

Selection of a
model

1
@

Evaluative Case
Study

o0
g
Find clusters in the
various
implementation of

CPS across
industries

Classification
Framework

digital

W, el

4gyberwal

W

Next steps - Challenges of creating a legally compliant CPS

Finding a relevant legal text based on keywords
Access to cited material is not free of cost

Identifying the level of compliance with the legal text
reached after complying with related specifications
Establishing the relationship to other acts based on
the original one

Understanding technical requirements from legal texts

S Y
Get the hEN list Find all specifications
from EC »| from all standards
D (and related)
e
Find a relevant Ge_t dll
legal text conventions and N
standards Generate testable
specifications based
> on legal text

International standards

and conventions @ IEC ® I1SO @ ITU
? 1 1

i Refers to

Collaborate with

=] CE marki
Harmonized ‘ marking

=t Standards

I Suggest 1

1 1
m EU Agencies m NSB <= == h Enterprises

Generate a test set
based on
specifications

Automated cybersecurity testing with genetic algorithms

Denis Darquennes, Philippe Massonet

Défi 01: MUTA4SEC - Test generati
for CPS security with Pynguin

Groupe de travail défi 01

Denis Darquennes, Philippe Masso
CETIC

) A Wallonie
*+ recherche

SPW

https://cyberwal.be/
https://cyberecellence/

Plan

Mutdsec - test generation for security

The Context

Case study: Control Center and Zone policies - infected vehicle
software - supply chain attack

The Pynguin test generation (white box) - how it works

Execution of tests - spoof:
O zone policy assignation
O zone policy reporting
O vehicle speed reporting

Description of the CPS
Next steps : the test generation for ROS

MUTA4SEC - Test generation for security

Test generation is based on genetic algorithms

@ filter tests for selection of most pertinent usable tests g%m

@® using the Pynguin tool

® in cyber physical systems (CPS) (challenge #1) oo
@® using the ROS framework (part of the case study : the rover)

Automated test generation to highlight security vulnerabili eee ROS 2

Rover case study method can be applied to other CPS (e.qg.: railway
systems)

https://github.com/se2p/pynguin
https://docs.ros.org/en/rolling/index.html

Context

Protecting railway systems

Control center supervision

process: (2) e
1. Incident detected Control center < detector
2. Incident position
3. Adapt speed profile 1
4. Monitor speed / distance

P (3) (4) 1 ©

)
— Add Assertions: check 5
integrity of vehicle controls M M
(policy, speed)
m

Control Center and Zone policies

Integrity tests on threats:
® (A) Integrity: zone

policy sent is the one (E)
received
® (B) Zone policy is
reSDECted Control Incident
o (C) Integrity: center < detector
monitored data A
corresponds to real (A) ;B,D -
data v z
® (D) Integrity: . (C) .
monitoring data sent [Zone Namur ___ 2
is the same that is
received

® (E) Monitoring data

dicnlaved ic the came

Control Center and Zone policies

Integrity tests on threats:

® (A) Integrity: zone policy sent is
the one received => attack (E)
on registered zone_policy

® (B) Zone policy is respected
=> attack on

communication of enter [Sl
speed policy A

® (C) Integrity: monitored data (A) (B,D ©
corresponds to real data => v) '

attack on effective speed . (C) .
® (D) Integrity: monitoring data L ZoneNamur 3

sent is the same that is
received => equivalent to

(B)

@& (F) Monitarina datra dienlaved

Attack: infected vehicle software

Protecting railway systems against
® Infection through supply chain attack

O e.qg. Usage of untrustworthy 3rd party software
® Generating three attacks on the train:

O (A) spoof zone policy assignation

O (B,D) spoof zone policy reporting

O (C) spoof vehicle speed reporting

Control < Incident

center detector

. (C) V.
L ZoneNamur M Zone Bruxelles 2

(A) (B,D
v ool

Supply chain attacks - #1 threat in 2030

‘\; ;/,
58% 62%
of attacks of the attacks
aimed to access exploit the
data trust of

customers in
their supplier

66%

Focuson THE SUPPLY CHAIN ATTACKS

SUPPLIER'S
S ON THE RISE

ENISA Threat Landscape for Supply Chain Attacks

ENISA - Threat Landscape for Supply Chain Attacks (2021)

| el S P . N - AN 4 [i . Y Y T P oY & -V a Ve Ta A

https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(2022)739259_EN.pdf

Using 3rd parties ... When things go
%Igmﬂd's Supply Chain Attack (2020) solarwinds

SolarWinds, a company that provides IT management and monitoring software,
suffered a cyberattack where attackers compromised its software development process.

The attackers inserted a backdoor into SolarWinds' Orion software during the
development phase. This compromised software was then distributed to SolarWinds'
customers, including government agencies, critical infrastructure entities, and
businesses in various countries. Attackers were stayed undetected for at least 6
months, and maybe up to 14 months

Pynguin - Automated Unit Test Generation

@ -
Test Case M
’ Execution
«uses» | 4@ —® 5 4@ - —@
! Analysis Test Test Case Assertion Test Case Python Test
Cluster Generation Generation Export Module
i [
Python Mutation §
Module DynaMOSA | | Whole Suite Engi
ngine
[
Add v,

Figure 1: The execution steps of PYNGUIN.

(integrity) 2l
assertions Tester

S. Lukasczyk and G. Fraser, "Pynguin: Automated Unit Test Generation for Python," 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), Pittsburgh, PA, USA, 2022, pp. 168-172, doi: 10.1145/3510454.3516829.

https://arxiv.org/abs/2202.05218

Test generation - Run Pynguin on Vehicle

«uses»

Python
Module

—

Test Case e
Execution

Vg

4-{ Analysis

7

Test Case
Export

£l

2 3 5
Test Test Case Assertion
Cluster Generation Generation

DynaMOSA

’ Whole Suite

Engine

0
} Mutation

Figure 1: The execution steps of PYNGUIN.

Test generation - Run Pynguin on Vehicle

class Vehicle:
speed_policy: in

def () -> None:
.change_speed_policy(50)

hange_speed_policy(, hew_speed policy: int) -> int:
int("Vehicle: speed reduced to", new_speed policy)
.speed _policy = new_speed_policy +
return .speed_policy

generated by Pynguin

Test generation - Run Pynguin on Control

Test generation - Run Pynguin on Control

Test generation - Run Pynguin on Control

Test generation - Pynguin output -

Cove e [@[SPynguin coverage report for module 'control_center’
-Achieved 92.31% branch coverage: 3/3 branchless code objects covered. 9/10 branches covere d. - Bra nc h

coverage

assertion : not covered
added by by any generated
tester test

vertical green
line: covered, test
generated for it

Created at 2024-02-19 12:59:44.678886

Test generation - Pynguin output

Example list of 5 generated tests - tests usable ... or not !

M Test cases automatically generated by Pynguin (https://www.pynguin.eu)
Please check them before you use them.

import pytest

import zone as module_ 0

import vehicle as module_1

import control_center as module 2

def test _case 0():
zone_0 = module 0.Zone.LIEGE
vehicle 0 = module_1.Vehicle()
control_center_0 = module_2.ControlCenter(vehicle 0)
none_type 0 = control _center_0.incident_detected(zone 0)

Test not useful because there is no assertion generated

Test generation - Pynguin output

List of generated tests

def test_case 1():
vehicle_0 = module_1.Vehicle()

int_0 = -4666

vehicle_1 = module_1.Vehicle()
control _center_0 = module_2.ControlCenter(vehicle 1)
with pytest.raises(AssertionError):
control _center_0.change _vehicle policy(vehicle 0, int_0)

Test useful but vehicle 1 line can be deleted

Test generation - Pynguin output

List of generated tests

def test case 2():
none_type 0 = None
zone_0 = module_0.Zone.CHARLEROI
vehicle 0 = module_1.Vehicle()

control _center_0 = module_2.ControlCenter(vehicle_0)
none_type 1 = control _center_0.incident _detected(zone 0)
control _center_1 = module_2.ControlCenter(none_type 0)

Test not useful because the incident that could be tested
(zone charleroi) is not referenced

Test generation - Pynguin output

List of generated tests

def test _case _3():
vehicle 0 = module _1.Vehicle()
control _center_0 = module_2.ControlCenter(vehicle 0)
zone_0 = module_0.Zone.NAMUR
int_0 = control _center_0.calculate_speed _profile(zone_0)
assert int_0 == 30
int_1 = vehicle 0.get _speed policy()
int_2 = control _center_0.calculate_speed profile(zone 0)
assert int_2 == 30
float_0 = vehicle_0.get_speed()
vehicle_1 = module_1.Vehicle()
bool 0 = False
with pytest.raises(AssertionError):
control_center_0.change_vehicle policy(vehicle 1, bool 0)

Test useful but tests two times the same speed (30). Could be simplified.
4 last lines are not useful and could be deleted. Code level reasoning.

Test generation - Pynguin output

List of generated tests

def test case 4():
bool 0 = True
none_type_0 = None
control_center_0 = module_2.ControlCenter(none_type 0)

int_0 = control_center_0.calculate_speed profile(bool 0)
assert int_0 ==

zone_0 = module _0.Zone.CHARLEROI

int_1 = control_center_0.calculate_speed profile(zone_0)
assert int_1 == 40

Test useful but some lines are not useful.

Execution of tests - vehicle non infected

Apply following test to control center code:

‘ Vehicle é]] e

speed_policy def test_case_1():
- : zone_0 = zone.Zone.LIEGE
| change_speed_policy(new_speed_policy) vehicle_0 = vehicle.Vehicle()

none_type 0 = control _center_0.incident_detected(zone 0)

l control_center_0 = control_center.ControlCenter(vehicle_0)
assert vehicle_0.speed_policy ==

ControlCenter

vehicle

incident_detected(Zone)

-
pytest

root@2285b563aa6:/simulation# pytest

test session starts
platform linux -- Python 3.10.13, pytest-7.4.4, pluggy-1.4.0
rootdir: /simulation
collected 1 item

pynguin-testgen/test _control_center.py

Execution of tests - vehicle infected

Apply following test to control _center code:

Vehicle
‘ % root@2285b563aa6: /simulation#
speed_policy test session starts
- platform linux Python 3.10.13, pytest-7.4.4, pluggy-1.4.0
‘ change_speed_policy(new_spenli._rste ro%‘lc.di; :d/iilrl.télation
collecte item

pynguin-testgen/test_control_center.py

ControlCenter

vehicle

incident_detected(Zone) Egig—gafegéﬁg i Zone. LIEGE

vehicle_0 = vehicle.Vehicle()
control_center_0 = control_center.ControlCenter(vehicle_0)

none_type_0 = control_center_0.incident_detected(zone_0)
vehicle_0.speed_policy ==

:16: AssertionError
Captured stdout call
: speed reduced to 50
speed reduced to 40
: speed reduced to 20

pynguin-testgen/test_control_center.py::test_case_1 - assert 70 == 20

Infected vehicle software

Intermediate attack:
® magnify the vehicle speed policy change,

® spoof the speed policy readings for the control center. ép ,
W
Vehicle % /
speed_policy def test_case_3():
) zone_0 = module_2.Zone.NAMUR
cZ?nsgZf(fee(ji—cp((’)"cy(new—gdms’gcy) vehicle_1 = module_0.Vehicle()
gel_speec_poley -50 control_center_2 = module_1.ControlCenter(vehicle_1)
l none_type 0 = control_center_2.incident_detected(zone_0)
int_1 = vehicle_1.get_speed policy()
ControlCenter assert 'i_nt_l ==

vehicle

incident_detected(Zone)

root@2285b563aa6: /simulation# pytest [
test session starts pytest

platform linux -- Python 3.10.13, pytest-7.4.4, pluggy-1.4.0

rootdir: /simulation

collected 1 item

pynguin-testgen/test_control_center.py

Execution of tests - vehicle infected

Apply following test to control center code: 65” win

Vehicle ,:& def test_case_0():
zone_0 = module_0.Zone.LIEGE

gy vehicle 0 = module_1.Vehicle()
change_speed_policy(newjf)éigolicy) control_center_1 = module_2.ControlCenter(vehicle_0)
get_speed_policy() -5 none_type 2 = control_center_1.incident_detected(zone_0)
get_speed() assert control _center_1.speed policy respected is True

l

ControlCenter

vehicle I
- pytest
| speed_policy respected | test_case_0():
— — zone_0 = module_0.Zone.LIEGE
incident_detected(Zone) vehicle_0 = module_1.Vehicle()

control_center_1 = module_2.ControlCenter(vehicle_0)

.

/speed_policy_respected\

none_type_2 = control_center_1.incident_detected(zone_0)
control_center_1.speed_policy_respected is

:16: AssertionError

Self.vehiCIe_get_S peed() Vehicle: speed reduced to 50 LA R

[Vehicle: speed reduced to 20

- neW_Speed_pO| ICy / pynguin-testgen/test_control_center.py::test_case_0 - assert False is True

Execution of tests - vehicle infected

Advanced attack:
® magnify the vehicle speed policy change,
® spoof the speed policy readings for the control center.
® spoof speed readings for the control center

Vehicle % 65” -

def test_case_0():

speed_policy zone_0 = module_0.Zone.LIEGE

e e T vehicle 0 = module_1.Vehicle() '
get_speed_policy() -5 control_center_1 = module_2.ControlCenter(vehicle_0)
get_speed() -5 none_type_2 = control_center_1.incident_detected(zone_0)

assert control _center_1.speed policy respected is True

!

ControlCenter I

pytest
vehicle
- root@2285b563aa6: /simulation# pytest
Lspeed_policy_respected | test session starts
. platform linux -- Python 3.10.13, pytest-7.4.4, pluggy-1.4.0
incident_detected(Zone) rootdir: /simulation

collected 1 item

pynguin-testgen/test_control_center.py

Execution of tests - external observer

Advanced attack:
® magnify the vehicle speed policy change,
® spoof the speed policy readings for the control center.
® spoof speed readings for the control center

Vehicle %

speed_policy

Control Incident
change_speed_poIicy(new_slre5_Qlicy) center < detector
get_speed_policy() - 5 A
get_speed() - 5

vehiccl: e l jiy ﬁ .))) (-)
[Zone Namur ___ 2

| speed policy respected |

incident_detected(Zone) External observer

(speed camera)

Execution of tests - summary

@® user express security invariants (properties)

o security policies are implemented through security invariants
® pynguin generates assertions to verify they are respected - or not
e with corresponding generated tests,

o on non infected code => test successful

o on infected code => test failure

Test report

Test | Assertion

Test 1

Test 2

A
Integrity: zone
policy sent is

the one
received

B C
Zone policy is Integrity:
respected monitored data
corresponds to
real data
X
External

observer

D
Integrity:
monitoring data
sent is the
same that is
received

(E)
Monitoring data
displayed is the

same as
received data

Out of scope

Cyber Lab - Cyber Physical Systems (CPS)

! m
1
@/ &
YT

Wide Lens Camera
Tracking

RaspBerry Pi/
Jetson Nano
Brain

Donkey Car

Ultrasonic Distance Chassis
Sensor

65

https://www.donkeycar.com/

Next steps - Test generation for ROS

E E E R O S 2 https://www.ros.org/

NASA VIPER

ROS used in ground software
systems

Prospecting for lunar " : :
P g Gazebo simulation used in

resources in permanently T ———

lshadowed} regllons of the i |, testing, planning, operator
unar south pole 25 training, etc.

Other open source software
cES/ROS bridge
Yamcs
OpenMCT

NASA requires software
used in flight missions to

be space qualified

ROS-INDUSTRIAL

ROS-Industrial is an open-source project that ap gpen-source space robotics framework for developing
extends the advanced capabilities of ROS to flight-quality robotics and autonomous space systems
manufacturing automation and robotics. https://space.ros.org/
https://rosindustrial.org) '

https://www.ros.org/
https://rosindustrial.org/about/description/
https://space.ros.org/

Cyber Lab - Cyber Physical Systems (CPS)

Control Center :ros2

V2I /

V2V

N \ V2V: Vehicle to vehicle

4 V2I: Vehicle to
HROSZ infrastructure

ROS2' 67

Cyber Lab - Cyber Physical Systems (CPS)

Next steps - Test generation for ROS

Low coverage generating tests on a ROS Node #56 Fai
banzo opened this issue 4 days ago - 0 comments

8 banzo commented 4 days ago Assignees

No one assigned
We are trying to generate tests for our ROS project. Running Pynguin on a simple vehicle class shows a coverage of

0.187500 and the test generated is not very useful:

Labels
Test cases automatically generated by Pynguin (https://www.pynguin.eu). L;' None yet
Please check them before you use them.
import pytest Projects
import vehicle as module_©

None yet

@pytest.mark.xfail(strict=True)
def test_case_0(): Milestone

module_0.Vehicle() No milestone

We are guessing that Pynguin gets lost at one point, and are looking for some insight on what we can do. Development

To Reproduce No branches or pull requests
We made a minimal example here.

i Notifications Customize
Expected behavior
We would expect the coverage to be a bit higher, with some relevant tests (test on the speed_profile or even the A Unsubscribe
quickstart example). You're receiving notifications because you authored
the thread.

Software Version (please complete the following information):

¢ 0S: Docker Ubuntu 22.04 + ROS Humble 1 participant

¢ Python version: 3.10.12 5

¢ Pynguin Version: 0.34.0

@

https://github.com/se2p/pynguin/issues/56

https://github.com/se2p/pynguin/issues/56

Conclusions and next steps

Generation of integration tests for the use case
Generation of security tests based on control variables introduced
inside code

Problem with ROS for test generation

For a same coverage level, generated tests are not similar
Implement assertions in place of variables

Generate tests for all assertions ? - Does it generate the right

tests ? Are there missing tests, and able to discover vulnerabilities ?
What is the coverage level ?

incorporate (how?) a fuzzer iot obtain more tests ?

Execution of

77— =
. Ocliciadlc
: human
assertlc_)ns | tests with | Create test
(security " coverage > selected > report
architecture PR generated
= . tryrguart)

tests

Further reading

@® MITRE -

DELIVER UNCOMPROMISED: SECURING CRITICAL SOFTWARE SUPPLY
CHAINS PROPOSAL TO ESTABLISH AN END-TO-END FRAMEWORK FO
R SOFTWARE SUPPLY CHAIN INTEGRITY

(2021)
ENISA - Good Practices for Supply Chain Cybersecurity
ROS Robotics Companies list

https://www.mitre.org/sites/default/files/2021-11/prs-21-0278-deliver-uncompromised-securing-critical-software-supply-chain.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-21-0278-deliver-uncompromised-securing-critical-software-supply-chain.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-21-0278-deliver-uncompromised-securing-critical-software-supply-chain.pdf
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://github.com/vmayoral/ros-robotics-companies

: ECOLE
I UCLouvain E“ POLYTECHNIQUE

DE LOUVAIN

PFV - Protocol Formal Validation

By Christophe Crochet & John Aoga & Axel Legay

Plan

1. Network Simulator-centric Compositional Testing (NSCT)
2. IDS Validation

3. Conclusion

Network centric Compositional Testing (NCT)

@® Extension of Network-centric Compositional Testing (NCT)

O by Kenneth McMillan

Ivy implementing NCT
P\ Ivy-based
b)) tester
p— Generator 10011 lc

I_I » (00111

D__d a 11010 -

‘_\ —> 7y O+o
— : Genprate | — 1 » Eo
P arsin

118 . tegter *: 0
Protocol RFCs <model>.ivy Nén-deterministic
tworks traces
Tested
implementation

Network centric Compositional Testing (NCT)

@® Extension of Network-centric Compositional Testing (NCT)

O by Kenneth McMillan

REC9000 Set of Refinement of some lvy QUIC
requirements requirements = tests implementation
= generic QUIC e.g only allow (server or client)
formal generation of X frame

specification

Network centric Compositional Testing (NCT)

® Random Process

st Generated ‘
2 b
Packet component ' Received

—

PING PING PING
frame frame frame PING TIMESTAMP c
frame frame
PONG PONG PONG Shim component
frame frame frame
R PONG TIMESTAMP (—l
TIMESTAMF | | TIMESTAMP | | TIMESTAMP frame frame

frame frame frame
F Y F
N t
[\\ L |
Random Process
Packet requirementis

Frame requlremenq +
| Solver]

Frame component

Network centric Compositional Testing (NCT)

@® Testing - Previous Works

‘ Violation of the
specification

‘ Feature not implemented

‘ Internal errors and crashes

‘ Problem in the draft

77

Network centric Compositional Testing (NCT)

@® Testing - Previous Works

quinn | mvfst | picoquic | quic-go | aioquic | quant | quiche

stream 56%
max A7%
reset__stream 61%

Generic connection__close 63%
stop__sending 48% i
accept__maxdata 50% 68% 43%
ext__min__ack__delay
unkown

Unknown unkown__tp 59% 68%
double__tp__error
tp__error

tp__acticoid__error

no__icid__error

token__error

new__token__error

handshake done_error

newconnectionid__error 68%
max__limit__error 49% 41% 41%
blocked__error T0% | 5%
retirecoid__error 7 8

stream_ limit__error 63%

newcoid__length__error

newcoid_ rtp__error

max__error

Network centric Compositional Testing (NCT)

@® Testing - Previous Works

quinn | picoquic

quic-go | aloquic

stream

max

accept maxdata

ext min ack delay
unkown

I tp_ unkown

double tp error

tp_error

tp__acticoid__error

no_ocid

tp_ prefadd_ error

blocked error

retirecoid error

new token error

limit max error

Network Simulator-centric Compositional
Testing (NSCT)

NSCT with Shadow
Ivy implementing NCT
Model-based
@} tester
Generator 10011 (c)
I_I — % (po0111 ~
b_q parsing 11010 NS
— — e, B K_ 7 Lo
— enerate R L. _____).
E— Il tester \ 4 - ©
— 74 Y (o]
Protocol RFCs <model>.ivy . Deterministic
Time-related networks traces
signal handers Tested
Time model , /. implementation
time events v (b)
' a _;.-' ‘ _______ 1 ~

Network Simulator-centric Compositional
Testing (NSCT)

@® Testing - Previous Works

A. RFC9000 ||B. RFC9002 C. Ack Frequency
Previous works Partially / y

complete

- Ack-delay - Congestion control

(rtt calculation) 90% of the draft
- Loss recovery
Max , Misinterpretation in

Problems found . / .
retransmissior a frame field

Contributions | Idle timeout

Table 1: Summary of contributions to Ivy model and problems found in picoquic

81

Network centric Compositional Testing (NCT)

® Attack models

REC9000 Set of IIIegaII_MaIicious lvy QUIC
requirements requirements attacker
= generic QUIC addition/modification
formal

specification

Network centric Compositional Testing (NCT)

@® Attack models - Previous Works:

e Man In the Middle:

* Isquic vulnerable with version negociation attack
1. Isquic start the handshake with version 0xff000022 (draft-34)
2. then we propose the 0xff00001d version (draft-29).

3. It responds us by resending an Initial packet with incorrect
checksum.

* DoS - Packet/frame manipulation:
* NEW_CONNECTION_ID frame - quant
* Malicious QUIC frame injection - picoquic

Network centric Compositional Testing (NCT)

Paper in Preparation draft-34)
+ Timing attacks

DoS - Packet/frame manipulation:
* NEW_CONNECTION_ID frame - quant
* Malicious QUIC frame injection - picoquic

Network Simulator-centric Compositional
Testing (NSCT)

® Summary:

0 NCT:

B Model-Based Formal Specification Adversarial testing (Black Box Endpoint)
B Component Based

B Randomized Process + Non-Deterministic

B Efficient to find errors in implementation and ambiguity in specification

Bl Efficient to find vulnerabilities in implementation

Network Simulator-centric Compositional
Testing (NSCT)

® Summary:

0 NSCT:

Model-Based Formal Specification Adversarial testing in NS (Grey Box Endpoint)
Component Based

Randomized Process + Deterministic + Reproducible + online debugging

Enable Timing based attacks

~ Might need implementation of syscalls

Plan of the Presentation

1. Network Simulator-centric Compositional Testing (NSCT)
2. IDS Validation

3. Conclusion

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS Validation
Formal APT Model

= Advanced Persistent Threat
0 Infiltration
0 Escalation and Lateral Movement

0 Exfiltration
0 APT Attack Tree (for multiple RFCs - Attacks: HTTP, FTP, ...)

“Formal APT Attack Tree Nodes/Components !
* Web based nodes only (no usb, social engineering, ...)

e Formal Attack "API"

IDS Validation
Formal APT Model

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

/” ™, A
| Scan /’;\\ Annwn /G;W’;;\"'I -\| |Frequency o
) Eom. [::plnll:d J t\ mad| [‘ 1 oo,
\ ‘ e J) . T/],
7 aR
()
i el A .
oyl Io
e T "u:t‘;] Agent A | ker model ﬂéﬂ%ﬂm
HTTP Ivy-based SMTP Ivy-based DNS Ivy-based

Benign/Attacker

10011

Benign/Attacker

ODR11|
11010

Benign/Attacker

10011
* 00111+
11010

10011
* (00121
11010

l

IDS

Unified
or
Individual
modeis

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS Validation
Formal APT Model

Shadow

N AN Ao
QE®

Table 3: The Number of Virtual Hosts, Processes, and the Amount
of Trattic in each Simulated Tor Network of the Given Scale

Network Scale | 5% J10% 15% 20% 25% 30%

- - Clients 436 | 871 1307 1742 2178 2614

a I atl O n Relays 349 | 694 1039 1385 1732 2076
Servers a0 | 79 119 158 198 238

Total Virtual Hosts 825 | 1644 2465 3285 4108 4928

Formal APT MOdel = NSCT Tor 785 § 1565 2346 3127 3910 4690

OnionTrace 785 § 1565 2346 3127 3910 4690
— H TGen 476 950 1426 1900 2376 2852
Phantom - EXten5|on Of ShadOW Total Processes 2046 § 4080 o6118 8154 10196 12232
. Simulated Gbit/s* 12 24 37 49 62 74
* 60 Tor networks using Tor v0.4.5.9 Equivalent Tor Users || 30.6k [79.2k 119k 158k 198k 238k
* Blade server cluster in which each blade contained identical hardware: * Mean across 20 total simeTOMETor each network scale.

0 1.25TiB of RAM and
0 4x8 core Intel Xeon E5-4627v2 CPUs (without hyper-threading support) running at 3.30 GHz.

— 30 ’\'2‘* 110l f:é* 100 = = - = = &
= 95l -1 phantom = y < .
p {hadow o 105H o Eoair -
E 20 * S Lol 4= ::: """ ey g o 'T|phantom
15 = n H H i shadow
c = =L = ™
3 S 95 1" phantom =
oz 10 o i h & 911 - S DY e
o . E_.. o 90H shadow : Y e
5 7= . ; . ; — 2 . . ; ; ; — £ gfiz ; ; , : :
_g 5 10 15 20 25 30 ;f 5 10 15 20 25 30 'ﬁ 5 10 15 20 25 30
= Tor Network Model Scale (%) o Tor Network Model Scale (%) & Tor Network Model Scale (%)
(a) Absolute Run Time (b) Run Time Relative to Shadow ¢) Max RAM Used Relative to Shadow

Figure 23: The time and memory required to complete each Tor network simulation in Phantom (using seccomp interception) and in Shadow’s
uni-process design as the network model scale increases. (b) and (c) show performance relative to Shadow’s baseline.

Plan of the Presentation

1. Network Simulator-centric Compositional Testing (NSCT)
2. IDS Validation

3. Conclusion

Conclusion

@® NCT/NSCT can find bugs and model attacks

0 Probably lower cost
® Leverage LLM for automating attacks and model creation

® GUI

Planning réunion de groupe de travail par Défi

e oo

23/01/2023 First meeting of the working group

29/09/2023 Présentation des research results and
discussion on demonstrators

13/05/2024 Présentation of démonstrateurs

*/11/2024 Présentation of more mature demonstrators

Who participates:

* Companies interested in the challenge

* Challenge Manager

* Researchers contributing to the challenge
e WSL

* Réseau Lieu

Thank you for your
attention

	Challenge 01 "Automation of cybersecurity verification for cybe
	Agenda
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	FSM : FTP
	Template : FTP
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Défi 01: MUT4SEC - Test generation for CPS security with Pyngui
	Plan
	MUT4SEC - Test generation for security
	Context
	Control Center and Zone policies
	Control Center and Zone policies (2)
	Attack: infected vehicle software
	Supply chain attacks - #1 threat in 2030
	Using 3rd parties … When things go wrong…
	Pynguin - Automated Unit Test Generation
	Test generation - Run Pynguin on Vehicle
	Test generation - Run Pynguin on Vehicle (2)
	Test generation - Run Pynguin on Control Center
	Test generation - Run Pynguin on Control Center (2)
	Test generation - Run Pynguin on Control Center (3)
	Test generation - Pynguin output - Coverage
	Test generation - Pynguin output (2)
	Test generation - Pynguin output (3)
	Test generation - Pynguin output (4)
	Test generation - Pynguin output (5)
	Test generation - Pynguin output (6)
	Execution of tests - vehicle non infected
	Execution of tests - vehicle infected
	Infected vehicle software (5)
	Execution of tests - vehicle infected (2)
	Execution of tests - vehicle infected (3)
	Execution of tests - external observer
	Execution of tests - summary
	Test report
	Cyber Lab - Cyber Physical Systems (CPS)
	Next steps - Test generation for ROS
	Cyber Lab - Cyber Physical Systems (CPS) (2)
	Cyber Lab - Cyber Physical Systems (CPS) (3)
	Next steps - Test generation for ROS (2)
	Conclusions and next steps
	Further reading
	Diapo 72
	Plan (2)
	Network centric Compositional Testing (NCT)
	Network centric Compositional Testing (NCT) (2)
	Network centric Compositional Testing (NCT) (3)
	Network centric Compositional Testing (NCT) (4)
	Network centric Compositional Testing (NCT) (5)
	Network centric Compositional Testing (NCT) (6)
	Network Simulator-centric Compositional Testing (NSCT)
	Network Simulator-centric Compositional Testing (NSCT) (2)
	Network centric Compositional Testing (NCT) (7)
	Network centric Compositional Testing (NCT) (8)
	Network centric Compositional Testing (NCT) (9)
	Network Simulator-centric Compositional Testing (NSCT) (3)
	Network Simulator-centric Compositional Testing (NSCT) (4)
	Plan of the Presentation
	IDS Validation Formal APT Model
	IDS Validation Formal APT Model (2)
	IDS Validation Formal APT Model (3)
	IDS Validation Formal APT Model - NSCT
	Plan of the Presentation (2)
	Conclusion
	Diapo 94
	Diapo 95

