Date 13/05/2024

Challenge 01 "Automation of cybersecurity verification for cyber physical systems"

Challenge 01 Working Group Meeting

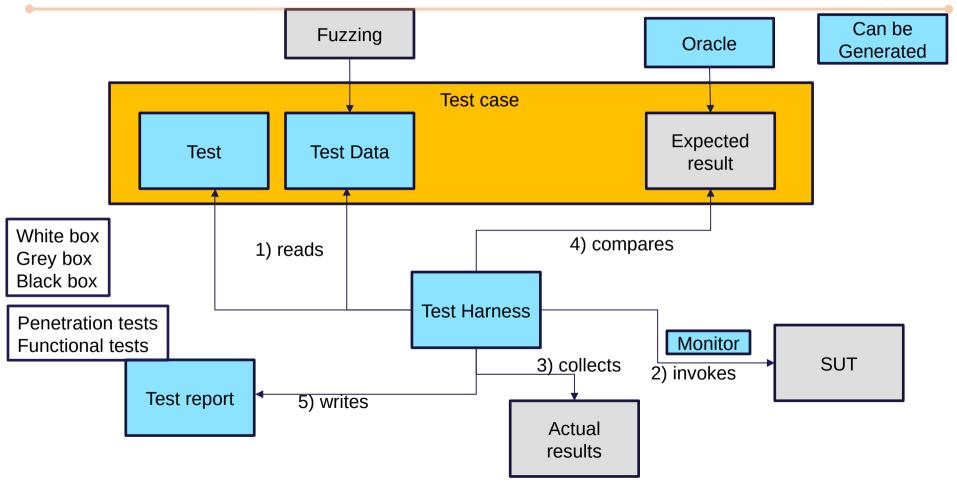
Philippe Massonet, Coordinateur Scientifique CETIC Guillaume NGuyen, UNamur Martin Vivian, UCLouvain Denis Darquennes, CETIC Christophe Crochet, John Aoga, UCLouvain

> https://cyberwal.be https://cyberexcellence.be

15:30-15:50	Improvements for stateful fuzzing	Martin Vivian (UCLouvain)
15:50-16:10	Identification of Cyber Physical System (CPS) & Orchestration of fuzzing testing	Guillaume Nguyen (Unamur)
16:10-16:30	Automated cybersecurity testing with genetic algorithms	Denis Darquennes, Philippe Massonet (CETIC)
16:30-16:50	Vérification of protocols via PFV (Protocol Formal Verification)	Christophe Crochet/John Aoga, UCLouvain

Challenge 01 "Automation of cybersecurity verification for cyber physical systems"

• Summary of the Challenge:

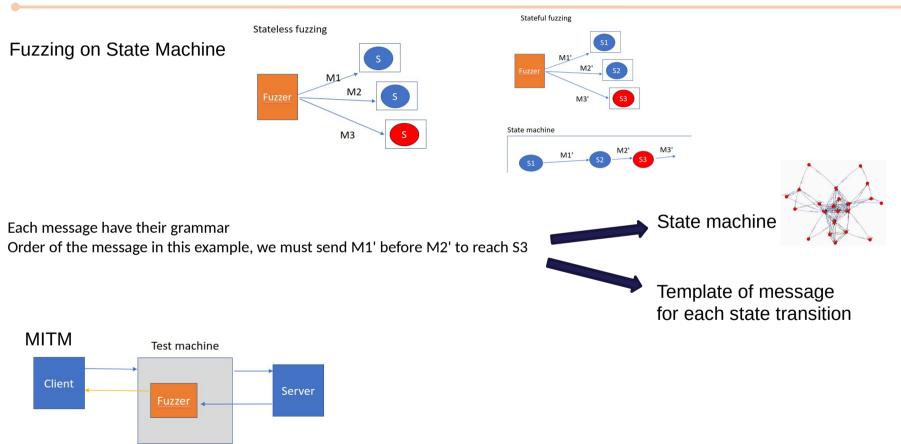

- Penetration testing: still a very manual process, requires cybersecurity experts
- Ambition: automate (partly) the creation of penetration tests to make penetration tests more accessible to companies (SMEs, large companies)
- Research Challenges:

. . .

- Automatic generation of functional cybersecurity tests (security architecture), use of different generation techniques (to compare) for penetration tests:
 - Fuzzing techniques,
 - $\circ\,$ Generation of tests by genetic mutation
 - Generating tests from models
- Partial automation in the form of assistance with the creation process and definition of penetration tests.

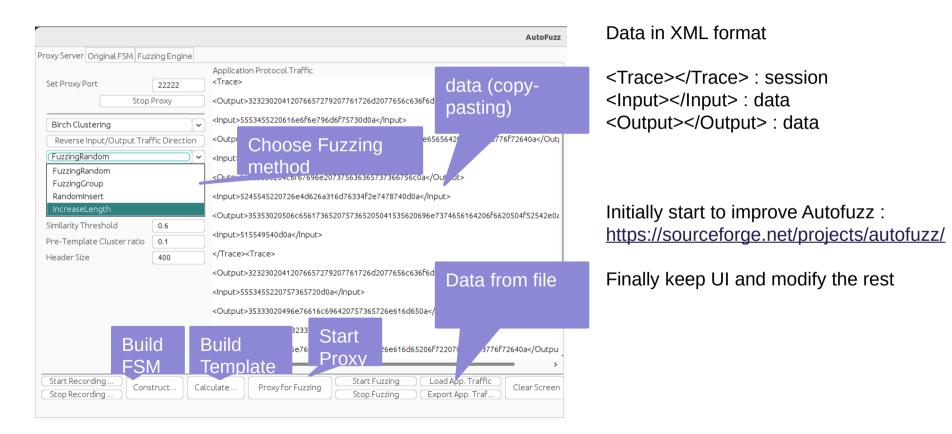
"Test Harness pattern" - Generation

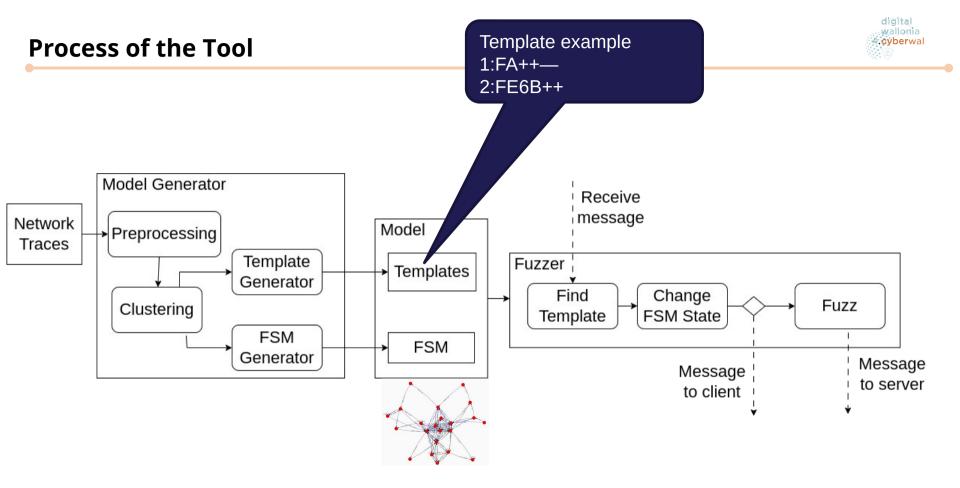
	White box	Grey box	Black box	Pen tests	Func tests
Improvements for stateful fuzzing			Х	Х	
Identification of Cyber Physical System (CPS) & Orchestration of fuzzing testing	Х			Х	Х
Automated cybersecurity testing with genetic algorithms	Х				Х
Vérification of protocols via PFV (Protocol Formal Verification)	Х				Х



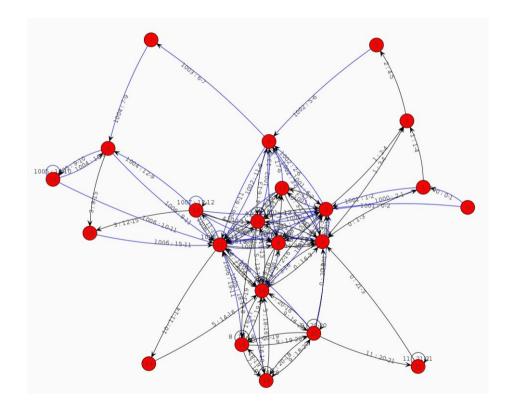
Improvements for stateful fuzzing

Martin Vivian, UCLouvain


digital wallonia **4 cyber**wal


Reminder

Tool Introduction

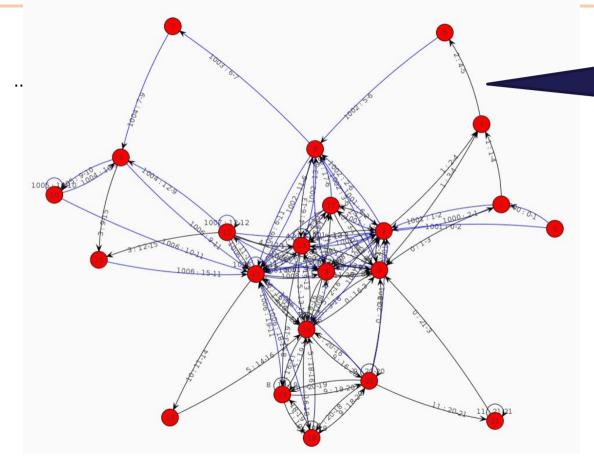


Build State Machine

Integrated tool for FSM

FlexFringe : https://github.com/tud elft-cda-lab/FlexFringe

Start Recording	Construct	Calculate	Proxy for Fuzzing		Start Fuzzing	Load App. Traffic	Clear Screen
Stop Recording	Construct	Calculate		JC	Stop Fuzzing	Export App. Traf	Clear Screen


Gather similar networking messages from the data to build a fsm based on this cluster

 Preprocessing:
 Find highest variable part (like crc, session id...) and don't take in account for clustering Example : FE+++++A----- => "+" indicate high variablility

 2) Header separation (clustering on header) : Choose a header length for the clustering Example : header = 4 for frame "AABBCCDD" => header part is AABB
 Create separate cluster for size below
 Create a separate cluster for unclusterized data

3) Algorithm used Hiearchical Clustering algorithm : (BirchLeaf clustering) : https://github.com/sbobek/smiling/blob/master/demo/src/main/java/smile/demo/vg/BIR

Link between State Machine and cluster

 We are at the state 4
 We receive an ouptut message that match the cluster ID 2 then we go to the state 5

> Cluster Id 2 should be represented by the template : AF++-C—++ And the message received should be AFEBFCEEAA

If output are fuzz then the message will be fuzzed following the corresponding template

Start Fuzzing

Stop Fuzzing

Proxy for Fuzz

Load App. Traffic

Export App. Traf

Clear Screer

Template :

- Since the fuzzer is in MitM we can modify the messages by following a template
- We need before to calculate the template for each cluster
- Distinction between constant value, strong and weak variable with Xi² (distribution for each position in the frame).

Strategy :

Don't fuzz constant, less fuzzing for highest variable and high fuzzing for weak variable.
 Template example:
 E++++
 (red no fuzzing, yellow low probability to be fuzzed and green higher probability.

Start Recording

Stop Recording

Construct..

Calculate

– Fuzzing Function :

Possibility to not fuzz all frame, select states to fuzz.

Information :

Distinction beween constant value, strong a

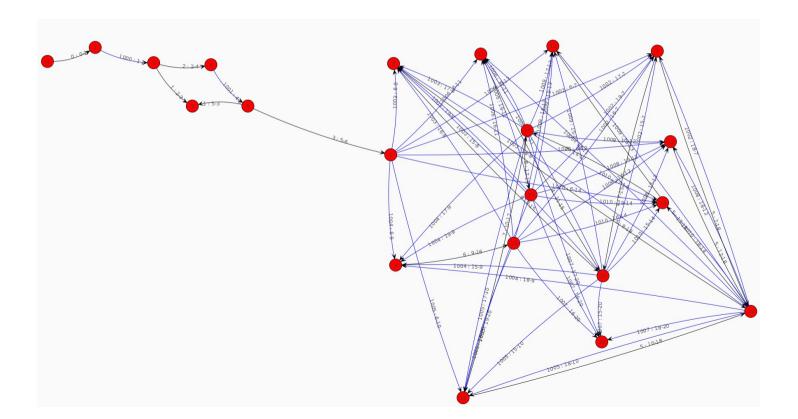


- First case study to test our implementation
- Test on FTP server implementation (Open and compact FTP server version 1.2)
- https://sourceforge.net/projects/open-ftpd/files/open-ftpd/

Results

- Our tool was able to reproduce the crash from the papers

The insertion of "/r", "/n" or a space symbol in the middle of the parameters could crash whole template variable part (i.e. sending a command without a parameter) could also I

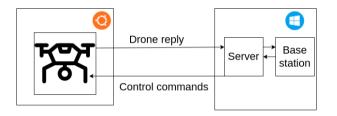

TD	ln (0.	17
ID	Dir	Size	Template
1000	S	24	5553455220-+-+-+-+0d0a
1000	S	26	5553455220+-+-+0d0a
1001	S	26	5041535320-+-+-+-+-+0d0a
1001	S	28	5041535320+++++++++++0d0a
1002	S	30	4d4b4420+++++++++++++++0d0a
1007	S	8	51554954
1008	S	42	5245545220-+-+-+-+-+-+-+2e7478740d0a
1009	S	42	44454c4520-+++-+-+-+2e7478740d0a
1010	S	12	4c4953540d0a
0	C	360	3232302d202a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2
1	C	78	353330204c6f67696e206f722050617373776f7264
1	C	54	353330204c6f67696e20696e636f72726563742e20
			•••
5	C	86	3535302022-+-+-+-++-+2e7478742220
6	C	110	323530204368616e67656420746f20646972656374
6	C	68	323530204368616e67656420746f20646972656374

I GRAINE ON THE OPTION I TOPPOOL T TOPOLO

0		00	525550204505010e01050420140120040512050514
7	С	126	313530204f70656e696e672062696e617279206d6f

- 7 C 102 313530204f70656e696e672042696e617279206d6f..
- 8 C 50 323236205472616e736665727420436f6d706c6574...

FSM : FTP


Template : FTP

ID	Dir	Size	Template
1000	S	24	5553455220-+-+-+-+0d0a
1000	S	26	5553455220+-+-+0d0a
1001	S	26	5041535320-+-+-+-+-+0d0a
1001	S	28	5041535320+++++++++++0d0a
1002	S	30	4d4b4420++++++++++++++0d0a
1007	S	8	51554954
1008	S	42	5245545220-+-+-+-+-+-+-+2e7478740d0a
1009	S	42	44454c4520-+++-+-+-+2e7478740d0a
1010	S	12	4c4953540d0a
0	С	360	3232302d202a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2
1	С	78	353330204c6f67696e206f722050617373776f7264
1	С	54	353330204c6f67696e20696e636f72726563742e20
5	С	86	3535302022-+-+-+-+-+-++-+2e7478742220
6	C	110	323530204368616e67656420746f20646972656374
6	C	68	323530204368616e67656420746f20646972656374
7	С	126	313530204f70656e696e672062696e617279206d6f
7	С	102	313530204f70656e696e672042696e617279206d6f
8	С	50	323236205472616e736665727420436f6d706c6574

Industrial protocol caracterised by

- CRC
- Session ID
- DateTime
- Telemetric, logs packets
- Header
- Black-box
- No always tuple input-output
- No text-interpretable protocol

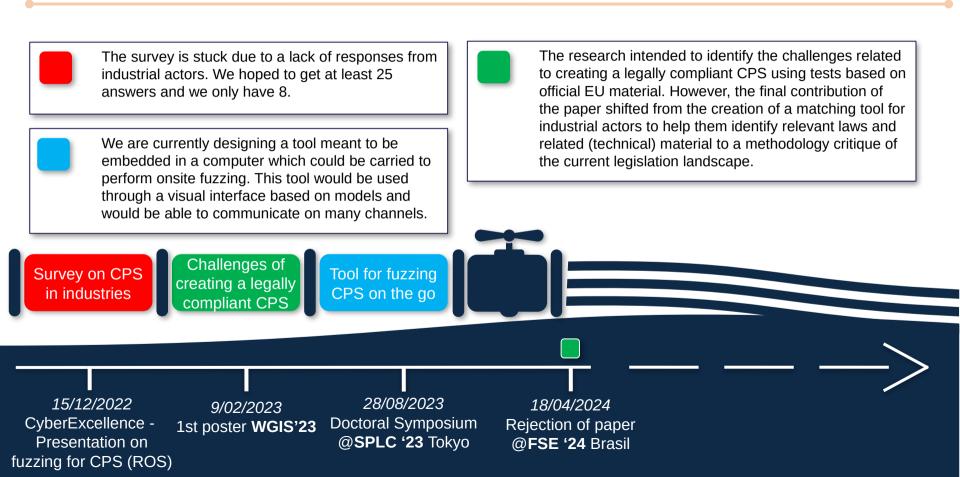
- Relevant State machine
- Relevant template to identify cluster and reusable for fuzzing

- Tools is enough good to create separate state for the drone commands
 - For example, each time that we start the motors we go to the state 9.
 - It gives the possibility to only fuzz specific control command without modifying telemetries packet and get the good fuzzing template.

- RTSP (Real Time Streaming Protocol) <u>https://github.com/rgaufman/live555</u>
- Protocol inside Profuzzbench : https://github.com/profuzzbench/profuzzbench
- When we launch Profuzzbench we find crash on RTSP
- But when we try to replay the frames we don't find the bugs
- Reason they fixe a session id in the code for the reproducible of results
- But that introduce a crash

digital wallonia 4 **cyber**wal

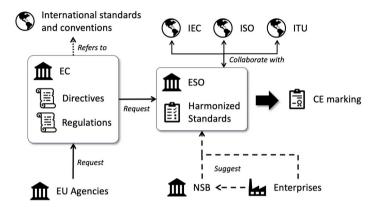
- Test and adapt the tool for others case studies
- Improvement the quality of the template by detecting type (string, integer...)
- Find a heuristic to know in advance the number of clusters
- Detection about the dependencies between the messages (increment)
- Possibility to correct the model during the fuzzing phases
- Compare with dynamic execution

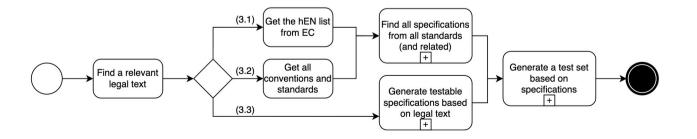


Test-based classification framework for CPS

Guillaume Nguyen, UNamur


Overview


Next steps - Survey



- 1. Finding a relevant legal text based on keywords
- 2. Access to cited material is not free of cost
- 3. Identifying the level of compliance with the legal text reached after complying with related specifications
- 4. Establishing the relationship to other acts based on the original one
- 5. Understanding technical requirements from legal texts

Automated cybersecurity testing with genetic algorithms

Denis Darquennes, Philippe Massonet

Défi 01: MUT4SEC - Test generation for CPS security with Pynguin

Groupe de travail défi 01

Denis Darquennes, Philippe Massonet, Sébastien Dupont -CETIC

https://cyberwal.be https://cyberexcellence.be

Plan

- Mut4sec test generation for security
- The Context
- Case study: Control Center and Zone policies infected vehicle software - supply chain attack
- The Pynguin test generation (white box) how it works
- Execution of tests spoof:
 - zone policy assignation
 - zone policy reporting
 - \bigcirc vehicle speed reporting
- Description of the CPS
- Next steps : the test generation for ROS

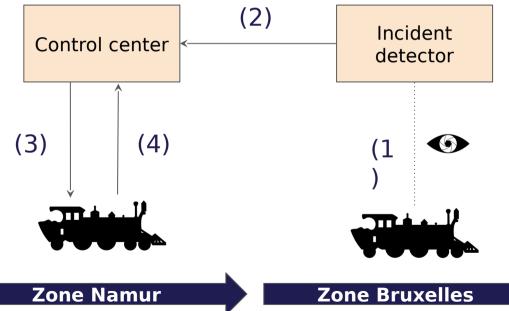
MUT4SEC - Test generation for security

Test generation is based on genetic algorithms

- filter tests for selection of most pertinent usable tests
- using the Pynguin tool

Automated test generation to highlight security vulnerabili **#ROS 2**^{**}

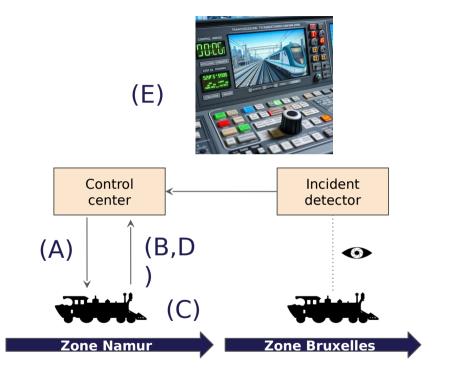
- in cyber physical systems (CPS) (challenge #1)
- using the <u>ROS framework</u> (part of the case study : the rover)


Rover case study method can be applied to other CPS (e.g.: railway systems)

Context

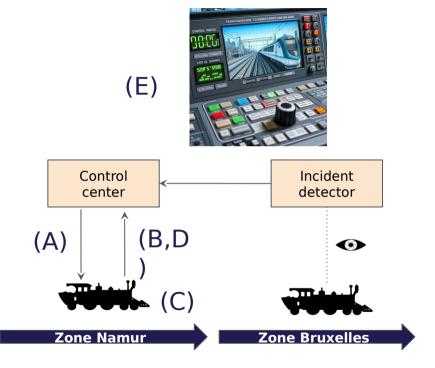
Protecting railway systems

- Control center supervision process:
 - 1. Incident detected
 - 2. Incident position
 - 3. Adapt speed profile
 - 4. Monitor speed / distance
- → Add Assertions: check integrity of vehicle controls (policy, speed)



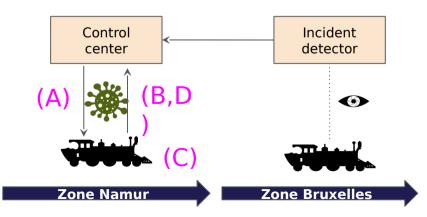
Control Center and Zone policies

Integrity tests on threats:


- (A) Integrity: zone policy sent is the one received
- (B) Zone policy is respected
- (C) Integrity: monitored data corresponds to real data
- (D) Integrity: monitoring data sent is the same that is received
- (E) Monitoring data displayed is the same

Control Center and Zone policies

Integrity tests on threats:


- (A) Integrity: zone policy sent is the one received => attack on registered zone_policy
 (B) Zone policy is respected
 - => attack on communication of speed_policy
- (C) Integrity: monitored data corresponds to real data => attack on effective speed
- (D) Integrity: monitoring data sent is the same that is received => equivalent to
 (B)
- (E) Monitoring data displayed

Attack: infected vehicle software

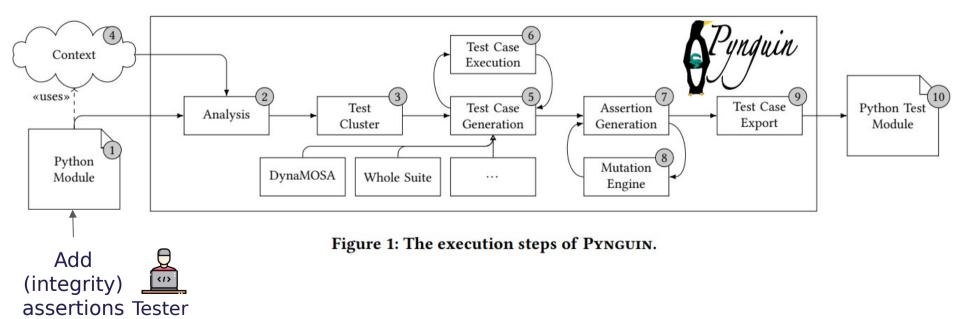
Protecting railway systems against

- Infection through <u>supply chain attack</u>
 - \odot e.g. Usage of untrustworthy 3rd party software
- Generating three attacks on the train:
 - \odot (A) spoof zone_policy assignation
 - (B,D) spoof zone_policy reporting
 - (C) spoof vehicle_speed reporting

Supply chain attacks - #1 threat in 2030

ENISA - <u>Threat Landscape for Supply Chain Attacks</u> (2021)

European Outer Desiliance Act. European Derliement briefing (2022)


Using 3rd parties ... When things go Wrong SolarWinds Supply Chain Attack (2020)

SolarWinds, a company that provides IT management and monitoring software, suffered a cyberattack where attackers compromised its software development process.

The attackers inserted a backdoor into SolarWinds' Orion software during the development phase. This compromised software was then distributed to SolarWinds' customers, including government agencies, critical infrastructure entities, and businesses in various countries. Attackers were stayed undetected for at least 6 months, and maybe up to 14 months

Pynguin - Automated Unit Test Generation

S. Lukasczyk and G. Fraser, "<u>Pynguin: Automated Unit Test Generation for Python</u>," 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Pittsburgh, PA, USA, 2022, pp. 168-172, doi: 10.1145/3510454.3516829.

Test generation - Run Pynguin on Vehicle

[09:12:59] INFO INFO INFO INFO INFO INFO INFO INFO	E=1 pynguinproject-pathoutput-path ./pynguin-testgenmodule-name vehicle -v Start Pynguin Test Generation Collecting static constants from module under test No constants found Setting up runtime collection of constants Analyzed project to create test cluster 2 Modules: 1 Functions: 0 Classes: 12 Using strategy: Algorithm.DYNAMOSA Instantiated 5 fitness functions Using coverageArchive Using selection function: Selection.TOURNAMENT_SELECTION No stopping condition configured! Using fallback timeout of 600 seconds Using crossover function: SingLePointRelativeCrossOver Using ranking function: RankBasedPreferenceSorting Start generating test cases 5
INFO	Start generating test cases (5)
INFO	Initial Population, Coverage: 1.000000
INFO	Algorithm stopped before using all resources.
INFO	Stop generating test cases
INFO INFO	Start generating assertions 7 Setup mutation controller
INFO	Build AST for vehicle
INFO	Mutate module vehicle (8)
INFO	Generated 6 mutants
INFO	Running tests on mutant $1/6$
INFO	Running tests on mutant 2/6
INFO	Running tests on mutant 3/6
INFO	Running tests on mutant 4/6
INFO INFO	Running tests on mutant 5/6 Running tests on mutant 6/6
INFO	Mutant 0 killed by Test(s): 0
INFO	Mutant 1 killed by Test(s): 0
INFO	Number of Surviving Mutant(s): 4 (Mutants: 2, 3, 4, 5)
INFO	Calculating resulting FinalBranchCoverage
INFO	Written 1 test cases to /simulation/pynguin-testgen/test_vehicle.py 10
INFO	Writing statistics
INFO	Stop Pynguin Test Generation…

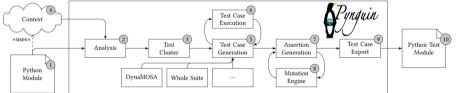


Figure 1: The execution steps of PYNGUIN.

Test generation - Run Pynguin on Vehicle

		E=1 pynguinproject-pathoutput-path ./pynguin-testgenmodule-name vehicle -v
[09:12:59]		Start Pynguth Test Generation
	INFO	Collecting static constants from module under test
	INFO	No constants found
	INFO	Setting up runtime collection of constants
	INFO	Analyzed project to create test cluster
	INFO	Modules: 1
	INFO	Functions: 0
	INFO	Classes: 12
	INFO	Using seed 1707469978713104112
	INFO	Using strategy: Algorithm.DYNAMOSA
	INFO	Instantiated 5 fitness functions
	INFO	Using CoverageArchive
	INFO	Using selection function: Selection.TOURNAMENT_SELECTION
	INFO	No stopping condition configured!
	INFO	Using fallback timeout of 600 seconds
	INFO	Using crossover function: SinglePointRelativeCrossOver
	INFO	Using ranking function: RankBasedPreferenceSorting
	INFO	Start generating test cases
	INFO	Initial Population, Coverage: 1.000000
	INFO	Algorithm stopped before using all resources.
	INFO	Stop generating test cases
	INFO	Start generating assertions
	INFO	Setup mutation controller
	INFO	Build AST for vehicle
	INFO	Mutate module vehicle
	INFO	Generated 6 mutants
	INFO	Running tests on mutant 1/6
	INFO	Running tests on mutant 2/6
	INFO	Running tests on mutant 3/6
	INFO	Running tests on mutant 4/6
	INFO	Running tests on mutant 5/6
	INFO	Running tests on mutant 6/6
	INFO	Mutant 0 killed by Test(s): 0
	INFO	Mutant 1 killed by Test(s): 0
	INFO	Number of Surviving Mutant(s): 4 (Mutants: 2, 3, 4, 5)
	INFO	Calculating resulting FinalBranchCoverage
	INFO	Written 1 test cases to /simulation/pynguin-testgen/test_vehicle.py
	INFO	Writing statistics
	INFO	Stop Pynguin Test Generation

class Vehicle:

speed_policy: int

def __init__(self) -> None: self.change_speed_policy(50)

def change_speed_policy(self, new_speed_policy: int) -> int: print("Vehicle: speed reduced to", new_speed_policy) self.speed_policy = new_speed_policy + 50 # infection return self.speed_policy

def test_case_0():
 vehicle_0 = module_0.Vehicle()
 assert vehicle_0.policy == 50

generated by Pynguin

Test generation - Run Pynguin on Control

Conto		
	53:/simulation# PYNGUIN_DANGER_AWARE=1 pynguinproject-path .	output-path ./pynguin-testgenmodule-name
	-vcreate-coverage-report True	
[13:14:31] INFO		generator.py:107
INFO		generator.py:208
INFO		generator.py:211
INFO		generator.py:220
[13:14:32] INFO) Analyzed project to create test cluster	module.py:1318
INFO		module.py:1319
INFO		module.py:1320
INFO		module.py:1321
INFO		generator.py:194
INFO		<pre>generationalgorithmfactory.py:302</pre>
INFO) Instantiated 23 fitness functions	<pre>generationalgorithmfactory.py:393</pre>
INFO		<pre>generationalgorithmfactory.py:346</pre>
INFO		<pre>generationalgorithmfactory.py:321</pre>
INFO		generationalgorithmfactory.py:119
INFO		<pre>generationalgorithmfactory.py:120</pre>
INFO		<pre>generationalgorithmfactory.py:334</pre>
INFO		<pre>generationalgorithmfactory.py:354</pre>
INFO		generator.py:517
INFO		searchobserver.py:77
INFO		searchobserver.py:83
INFO		searchobserver.py:83
INFO		searchobserver.py:83
INFO) Iteration: 4, Coverage: 0.869565	searchobserver.py:83

Test generation - Run Pynguin on Control

INFO	Iteration: 6117 , Coverage: 0.869565						
INFO	Iteration: 6118 , Coverage: 0.869565						
INFO	Iteration: 6119 , Coverage: 0.869565						
INFO	Iteration: 6120 , Coverage: 0.869565						
INFO	Iteration: 6121 , Coverage: 0.869565						
INFO	Iteration: 6122 , Coverage: 0.869565						
INFO	Iteration: 6123 , Coverage: 0.869565						
INFO	Iteration: 6124 , Coverage: 0.869565						
[13:24:32] INFO	Iteration: 6125 , Coverage: 0.869565						
INFO	Stopping condition reached						
INFO	Used search time: 600/600						
INFO	Stop generating test cases						
INFO	Start generating assertions						
INFO	Setup mutation controller						
INFO	Build AST for control_center						
INFO	Mutate module control_center						
INFO	Generated 27 mutants						
INFO	Running tests on mutant 1/27						
INFO	Running tests on mutant 2/27						
INFO	Running tests on mutant 3/27						
INFO	Running tests on mutant 4/27						
INFO	Running tests on mutant 5/27						
INFO	Running tests on mutant 6/27						
INFO	Running tests on mutant 7/27						
INFO	Running tests on mutant 8/27						

searchobserver.pv:83

Test generation - Run Pynguin on Control

Contor		
INFO	Mutant 7 killed by Test(s): 0, 1, 2, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 8 killed by Test(s): 0, 1, 2, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 9 killed by Test(s): 0, 1, 2, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 10 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 11 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 12 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 13 killed by Test(s): 0 , 1 , 2 , 3 , 5 , 6	assertiongenerator.py:374
INFO	Mutant 14 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 15 killed by Test(s): 0, 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 16 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 17 killed by Test(s): 0 , 1 , 3 , 5 , 6	assertiongenerator.py:374
INFO	Mutant 18 killed by Test(s): 0, 1, 2, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 19 killed by Test(s): 0 , 1 , 2 , 3 , 5 , 6	assertiongenerator.py:374
INFO	Mutant 20 killed by Test(s): 0 , 1 , 2 , 3 , 5 , 6	assertiongenerator.py:374
INFO	Mutant 21 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 22 killed by Test(s): 0, 1, 2, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 23 killed by Test(s): 0, 1, 2, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 24 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 25 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Mutant 26 killed by Test(s): 1, 3, 5, 6	assertiongenerator.py:374
INFO	Number of Surviving Mutant(s): 0 (Mutants:)	assertiongenerator.py:386
INFO	Calculating resulting FinalBranchCoverage	generator.py:439
[13:24:33] INFO	<pre>Written 7 test cases to /simulation/pynguin-testgen/test_control_center.py</pre>	generator.py:708
INFO	Writing statistics	<pre>statistics.py:361</pre>
INFO	Stop Pynguin Test Generation	generator.py:110

Coverage report for module 'control_center' Achieved 92.31% branch coverage: 3/3 branchless code objects covered. 9/10 branches covered. 14 vehicle change policy(new policy) assertion new profile = self.calculate speed profile(zone) 20 added by tester test det calculate_speed_protile(selt, zone: Zone) -> int 25 26 27 28 elif zone == Zone.NAMUR:

Branch coverage

vertical orange
line: not covered
by any generated
test
vertical green
line: covered, test
generated for it

Created at 2024-02-19 12:59:44.678886

Example list of 5 generated tests - tests usable ... or not !

```
# Test cases automatically generated by Pynguin (https://www.pynguin.eu).
# Please check them before you use them.
import pytest
import zone as module 0
import vehicle as module 1
import control center as module 2
def test case 0():
    zone 0 = module 0.Zone.LIEGE
    vehicle 0 = module 1.Vehicle()
    control center 0 = module 2.ControlCenter(vehicle 0)
    none type 0 = \text{control center } 0.\text{incident detected}(\text{zone } 0)
```

Test not useful because there is no assertion generated

List of generated tests

```
def test_case_1():
    vehicle_0 = module_1.Vehicle()
    int_0 = -4666
    vehicle_1 = module_1.Vehicle()
    control_center_0 = module_2.ControlCenter(vehicle_1)
    with pytest.raises(AssertionError):
        control_center_0.change_vehicle_policy(vehicle_0, int_0)
```

Test useful but vehicle 1 line can be deleted

List of generated tests

```
def test_case_2():
    none_type_0 = None
    zone_0 = module_0.Zone.CHARLEROI
    vehicle_0 = module_1.Vehicle()
    control_center_0 = module_2.ControlCenter(vehicle_0)
    none_type_1 = control_center_0.incident_detected(zone_0)
    control_center_1 = module_2.ControlCenter(none_type_0)
```

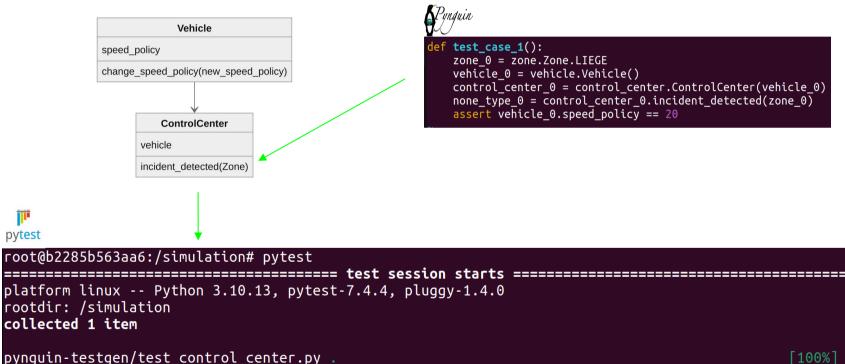
Test not useful because the incident that could be tested (zone charleroi) is not referenced

Test generation - Pynguin output List of generated tests

```
def test case 3():
    vehicle 0 = module 1.Vehicle()
    control center 0 = module 2.ControlCenter(vehicle 0)
    <u>zone 0 = module 0.Zone.NAMUR</u>
    int 0 = \text{control center } 0.\text{calculate speed profile(zone } 0)
    assert int 0 == 30
    int 1 = vehicle_0.get_speed_policy()
    int 2 = control center 0.calculate speed profile(zone 0)
    assert int 2 == 30
    float 0 = vehicle 0.get speed()
    vehicle 1 = module 1.Vehicle()
    bool 0 = False
    with pytest.raises(AssertionError):
        control_center_0.change_vehicle_policy(vehicle_1, bool 0)
```

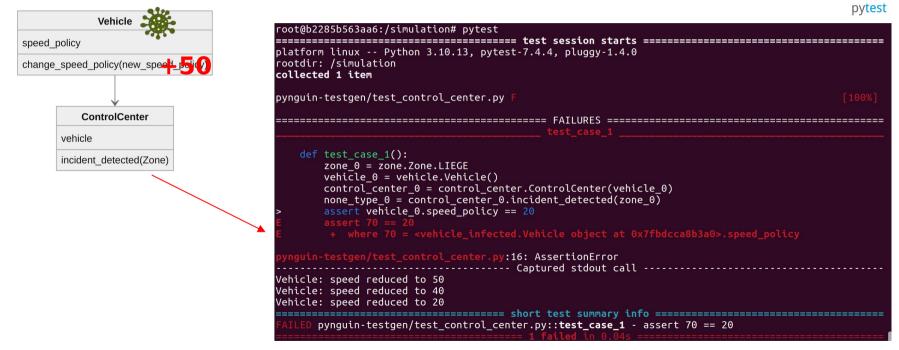
Test useful but tests two times the same speed (30). Could be simplified. 4 last lines are not useful and could be deleted. Code level reasoning.

List of generated tests


```
def test_case_4():
    bool_0 = True
    none_type_0 = None
    control_center_0 = module_2.ControlCenter(none_type_0)
    int_0 = control_center_0.calculate_speed_profile(bool_0)
    assert int_0 == 0
    zone_0 = module_0.Zone.CHARLEROI
    int_1 = control_center_0.calculate_speed_profile(zone_0)
    assert int_1 == 40
```

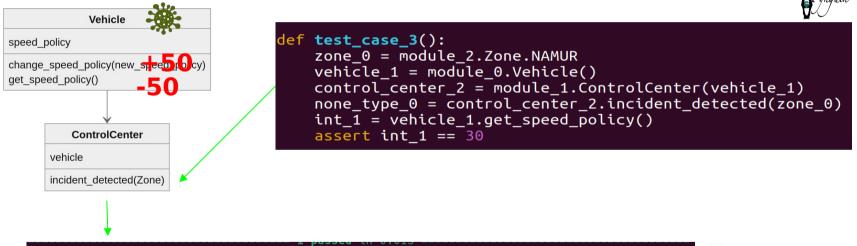
Test useful but some lines are not useful.

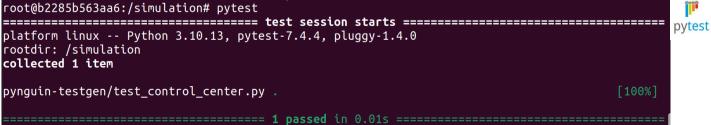
Execution of tests - vehicle non infected


Apply following test to control center code:

T pytest

Execution of tests - vehicle infected


Apply following test to control_center code:



Infected vehicle software

Intermediate attack:

- magnify the vehicle speed policy change,
- spoof the speed policy readings for the control center.

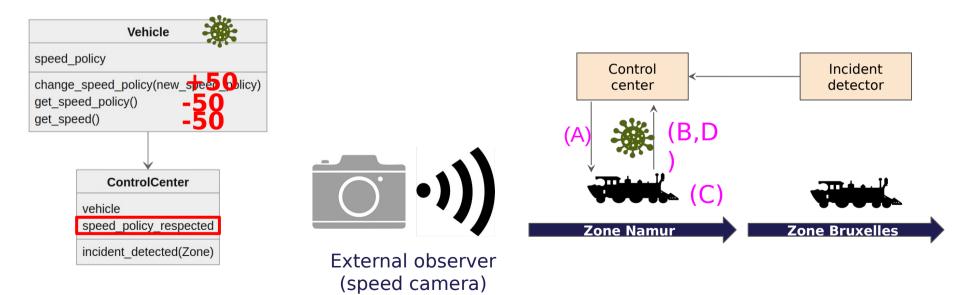
Execution of tests - vehicle infected

Apply following test to control center code:



Execution of tests - vehicle infected

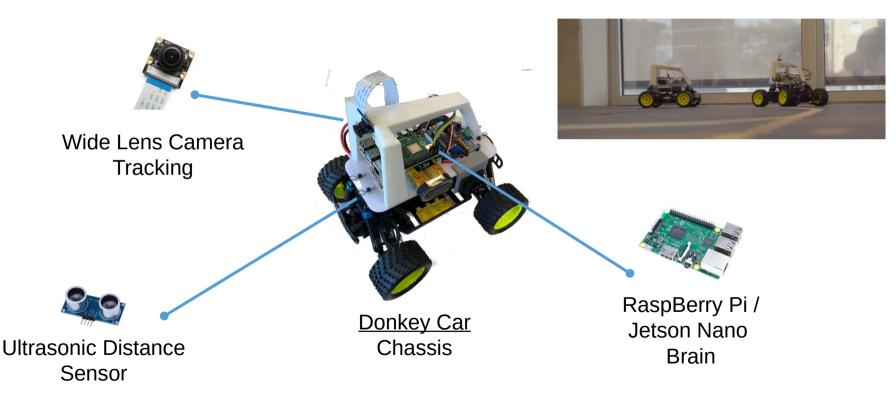
Advanced attack:


- magnify the vehicle speed policy change,
- spoof the speed policy readings for the control center.
- spoof speed readings for the control center

Execution of tests - external observer

Advanced attack:

- magnify the vehicle speed policy change,
- spoof the speed policy readings for the control center.
- spoof speed readings for the control center


Execution of tests - summary

- user express security invariants (properties)
 - security policies are implemented through security invariants
- pynguin generates assertions to verify they are respected or not
- with corresponding generated tests,
 - on non infected code => test successful
 - on infected code => test failure

Test report

Test / Assertion	A Integrity: zone policy sent is the one received	B Zone policy is respected	C Integrity: monitored data corresponds to real data	D Integrity: monitoring data sent is the same that is received	(E) Monitoring data displayed is the same as received data
Test 1	Х				Out of scope
Test 2		Х		Х	
			External observer		

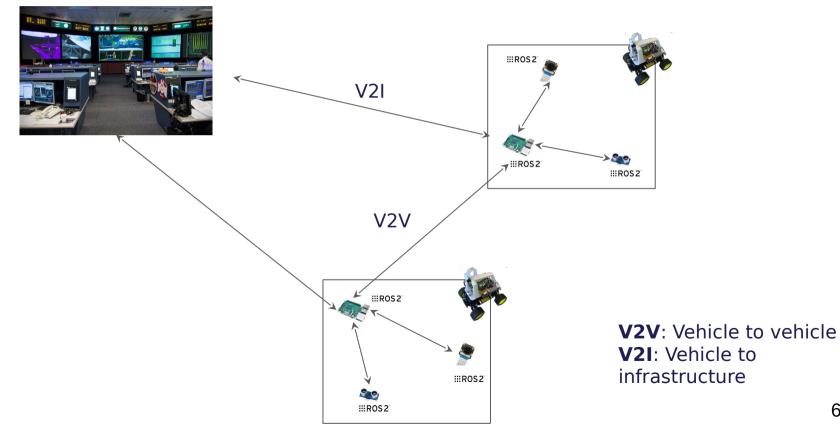
Cyber Lab - Cyber Physical Systems (CPS)

Next steps - Test generation for ROS

:::ROS 2^{**}

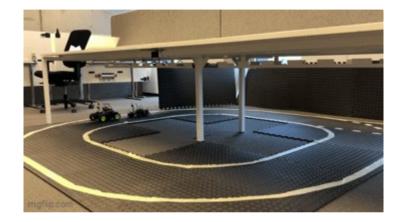
industrial

ROS-INDUSTRIAL


ROS-Industrial is an open-source project that extends the advanced capabilities of ROS to manufacturing automation and robotics. https://rosindustrial.org https://www.ros.org/

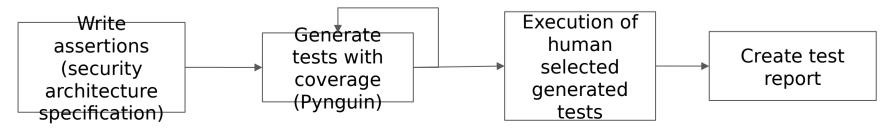
NASA VIPER **ROS** used in ground software systems Prospecting for lunar Gazebo simulation used in resources in permanently mission development, shadowed regions of the testing, planning, operator lunar south pole training, etc. Other open source software cFS/ROS bridge Yamcs OpenMCT NASA requires software used in flight missions to be space qualified

An open-source **space robotics framework** for developing flight-quality robotics and autonomous space systems <u>https://space.ros.org/</u>


Cyber Lab - Cyber Physical Systems (CPS)

Control Center **EROS2**

Cyber Lab - Cyber Physical Systems (CPS)


Next steps - Test generation for ROS

coverage generating tests on a ROS Node #56			Edit
an banzo opened this issue 4 days ago · 0 comments			
banzo commented 4 days ago	As	signees	
We are trying to generate tests for our <u>ROS</u> project. Running Pynguin on a simple <u>vehicle class</u> shows a coverage of 0.187500 and the test generated is not very useful:	No	o one assigned	
# Test cases automatically generated by Pynguin (https://www.pynguin.eu).		bels one yet	
<pre># Please check them before you use them. import pytest import vehicle as module_0</pre>		ojects one yet	
<pre>@pytest.mark.xfail(strict=True) def test_case_0(): module_0.Vehicle()</pre>		lestone milestone	
We are guessing that Pynguin gets lost at one point, and are looking for some insight on what we can do.	De	velopment	
To Reproduce We made a minimal example <u>here.</u>	No	branches or pull requests	
Expected behavior	No	otifications	
We would expect the coverage to be a bit higher, with some relevant tests (test on the speed_profile or even the quickstart example).		کې Unsubscr u're receiving notifications be	
Software Version (please complete the following information):	th	e thread.	
OS: Docker <u>Ubuntu 22.04 + ROS Humble</u>	11	participant	
Python version: 3.10.12		0	
Pynguin Version: 0.34.0			
0			

https://github.com/se2p/pynguin/issues/56

Conclusions and next steps

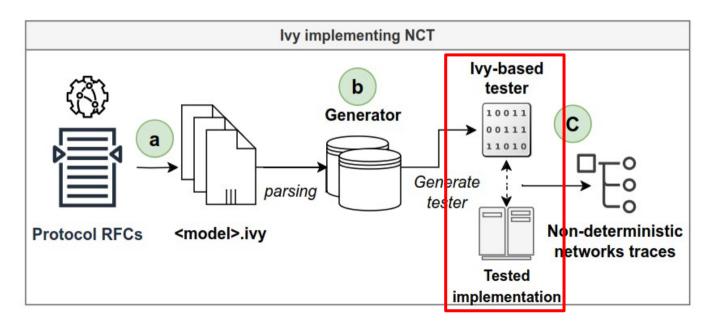
- Generation of integration tests for the use case
- Generation of security tests based on control variables introduced inside code
- Problem with ROS for test generation
- For a same coverage level, generated tests are not similar
- Implement assertions in place of variables
- Generate tests for all assertions ? Does it generate the right tests ? Are there missing tests, and able to discover vulnerabilities ? What is the coverage level ?
- incorporate (how?) a fuzzer iot obtain more tests ?

Further reading

• MITRE -

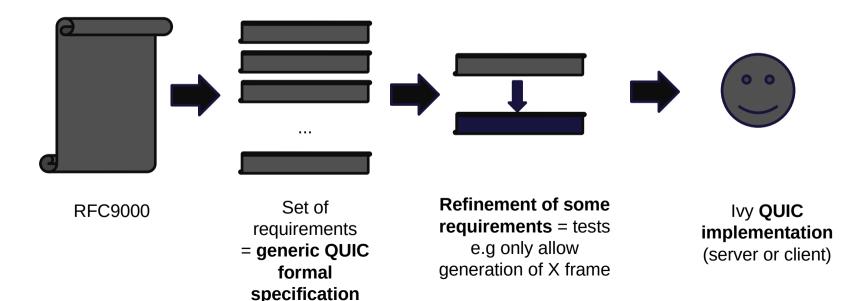
- DELIVER UNCOMPROMISED: SECURING CRITICAL SOFTWARE SUPPLY CHAINS PROPOSAL TO ESTABLISH AN END-TO-END FRAMEWORK FO R SOFTWARE SUPPLY CHAIN INTEGRITY
 - (2021)
- ENISA Good Practices for Supply Chain Cybersecurity
- ROS Robotics Companies list

PFV - Protocol Formal Validation

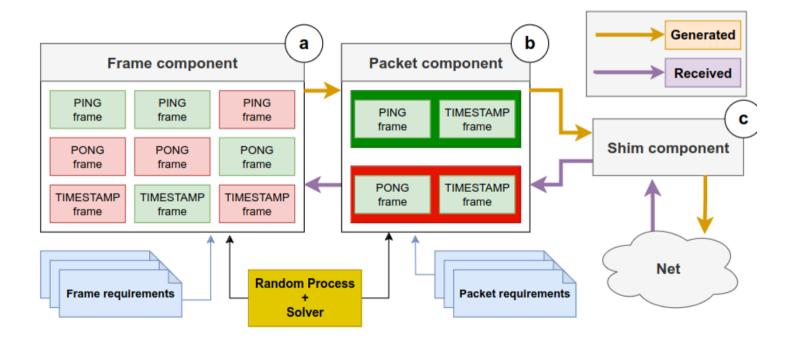

By Christophe Crochet & John Aoga & Axel Legay

Plan

1. Network Simulator-centric Compositional Testing (NSCT)


- 2. IDS Validation
- 3. Conclusion

- Extension of *Network-centric Compositional Testing* (NCT)
 - by Kenneth McMillan



• Extension of *Network-centric Compositional Testing* (NCT)

○ by Kenneth McMillan

Random Process

• Testing - Previous Works

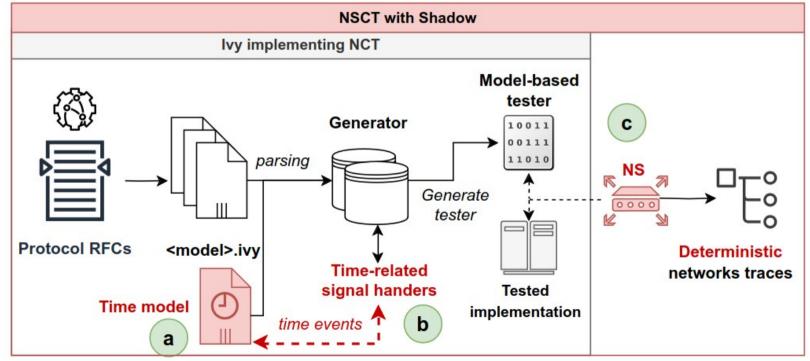
Violation of the specification

Feature not implemented

Internal errors and crashes

Problem in the draft

Server

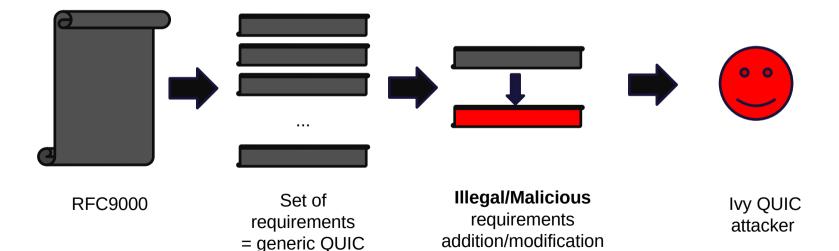

Iesting - Previous Works								
		quinn	\mathbf{mvfst}	picoquic	quic-go	aioquic	quant	quiche
	stream	79%	6%	56%	95%	18%	12%	97%
	max	85%	3%	47%	39%	27%	21%	96%
	reset_stream	29%	7%	61%	100%	24%	5%	98%
Generic	connection_close	95%	37%	81%	63%	78%	40%	100%
	stop_sending	100%	4%	48%	33%	33%	8%	96%
	accept_maxdata	77%	12%	50%	68%	43%	21%	96%
· · · · · · · · · · · · · · · · · · ·	$ext_min_ack_delay$	80%	10%	38%	100%	26%	6%	98%
Unknown	unkown	95%	99%	99%	96%	0%	0%	100%
	unkown_tp	84%	59%	98%	100%	68%	100%	96%
· · · · · · · · · · · · · · · · · · ·	double_tp_error	100%	0%	100%	100%	100%	3%	
Transport	tp_error	100%	100%	0%	100%	0%	0%	0%
	tp_acticoid_error	100%	0%	0%	0%	0%	100%	0% 0%
parameter	no_icid_error	100%	100%	100%	100%	100%	0%	
errors	token_error	100%	98%	100%	100%	100%	100%	99%
Violation of the	new_token_error	100%	0%	0%	84%	100%	0%	0%
	handshake_done_error	100%	92%	89%	0%	86%	-2%	77%
draft	newconnectionid_error	81%	85%	100%	9%	68%	93%	91%
· · · · · · · · · · · · · · · · · · ·	max_limit_error	49%	41%	100%	0%	41%	16%	0%
	blocked_error	70%	0%	0%	75%	0%	0%	100%
Invalid field	retirecoid_error	87%	0%	86%	85%	0%	0%	0%
	stream_limit_error	100%	63%	99%	98%	99%	10%	0%
	newcoid_length_error	84%	0%	2%	81%	0%	0%	91%
	newcoid_rtp_error	91%	0%	0%	90%	0%	0%	0%
+	max_error	0%	90%	100%	0%	0%	0%	0%

Tacting Draviaus Marks

Testing - Previous Works

ng - Previous N	Vorks	5					lsquic
	quinn	picoquic	quic-go	aioquic	quant	quiche	lsquic
stream	99%	51%	100%	97%	85%	52%	92%
max	100%	15%	100%	98%	85%	34%	100%
accept_maxdata	100%	93%	100%	97%	95%	82%	83%
ext_min_ack_delay	100%	40%	99%	100%	100%	100%	95%
unkown	100%	96%	99%	0%	0%	100%	0%
tp_unkown	100%	34%	99%	99%	100%	99%	96%
double_tp_error	0%	100%	100%	0%	0%	0%	0%
tp_error	0%	0%	100%	0%	0%	0%	0%
tp_acticoid_error	0%	0%	0%	0%	100%	0%	0%
no_ocid	0%	100%	100%	0%	0%	0%	0%
tp_prefadd_error	0%	100%	0%	0%	0%	0%	0%
blocked_error	99%	0%	97%	0%	0%	91%	98%
retirecoid_error	99%	99%	100%	0%	0%	0%	98%
new_token_error	98%	94%	96%	1%	0%	87%	100%
limit_max_error	0%	88%	0%	0%	81%	0%	0%

Network Simulator-centric Compositional Testing (NSCT)

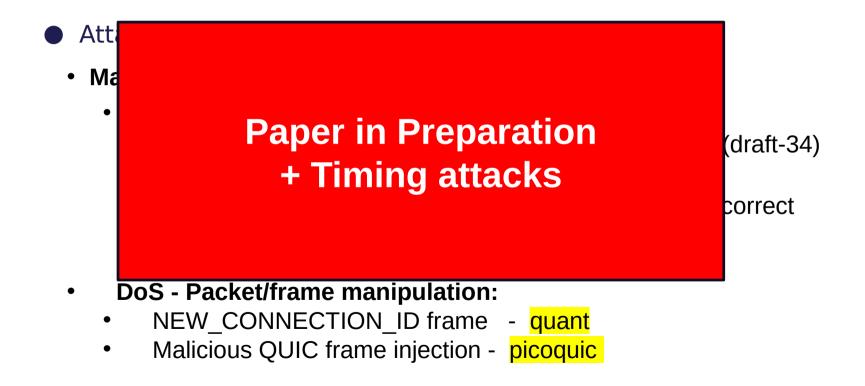


Network Simulator-centric Compositional Testing (NSCT) • Testing - Previous Works

	A. RFC9000	B. RFC9002	C. Ack Frequency	
Previous works	Partially complete	/	/	
l 'ontributions	- Ack-delay - Idle timeout	Congestion control (rtt calculation)Loss recovery	90% of the draft	
Problems found	Max retransmissior	/	Misinterpretation in a frame field	

Table 1: Summary of contributions to Ivy model and problems found in *picoquic*

• Attack models


formal specification

Network centric Compositional Testing (NCT)

• Attack models - Previous Works:

- Man In the Middle:
 - Isquic vulnerable with version negociation attack
 - 1. Isquic start the handshake with version 0xff000022 (draft-34)
 - 2. then we propose the 0xff00001d version (draft-29).
 - 3. It responds us by resending an Initial packet with incorrect checksum.
- DoS Packet/frame manipulation:
 - NEW_CONNECTION_ID frame quant
 - Malicious QUIC frame injection picoquic

Network centric Compositional Testing (NCT)

Network Simulator-centric Compositional Testing (NSCT) • Summary:

• **NCT**:

Model-Based Formal Specification Adversarial testing (Black Box Endpoint)

Component Based

Randomized Process + Non-Deterministic

Efficient to find errors in implementation and ambiguity in specification

Efficient to find vulnerabilities in implementation

Network Simulator-centric Compositional Testing (NSCT) • Summary:

- **NSCT**:
 - Model-Based Formal Specification Adversarial testing in NS (*Grey Box* Endpoint)
 - Component Based
 - Randomized Process + Deterministic + Reproducible + online debugging
 - Enable Timing based attacks
 - ~ Might need implementation of syscalls

Plan of the Presentation

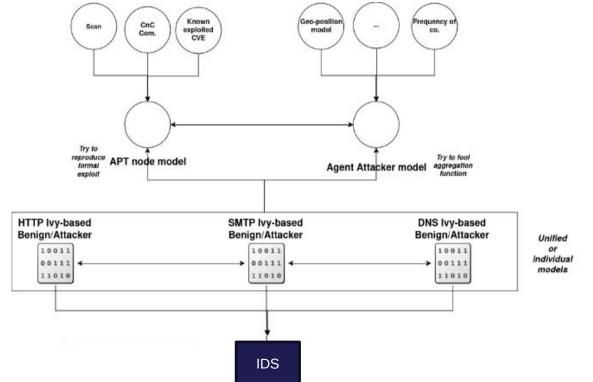
1. Network Simulator-centric Compositional Testing (NSCT)

2. IDS Validation

3. Conclusion

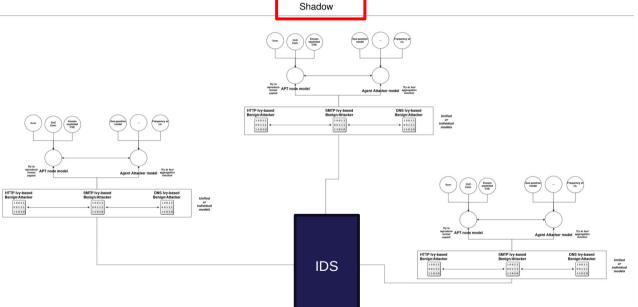
https://dl.acm.org/doi/pdf/10.1145/3359986.3361208 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS Validation Formal APT Model • APT = Advanced Persistent Threat


- Infiltration
- Escalation and Lateral Movement
- o Exfiltration
- APT Attack Tree (for multiple RFCs Attacks: HTTP, FTP, ...)

• Formal APT Attack Tree Nodes/Components !

- Web based nodes only (no usb, social engineering, ...)
- Formal Attack "API"


https://dl.acm.org/doi/pdf/10.1145/3359986.3361208 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS Validation Formal APT Model

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS Validation Formal APT Model

Table 3: The Number of Virtual Hosts, Processes, and	the Amount
of Traffic in each Simulated Tor Network of the Given	Scale

Network Scale	5%	10%	15%	20%	25%	30%
Clients	436	871	1307	1742	2178	2614
Relays	349	694	1039	1385	1732	2076
Servers	40	79	119	158	198	238
Total Virtual Hosts	825	1644	2465	3285	4108	4928
Tor	785	1565	2346	3127	3910	4690
OnionTrace	785	1565	2346	3127	3910	4690
TGen	476	950	1426	1900	2376	2852
Total Processes	2046	4080	6118	8154	10196	12232
Simulated Gbit/s*	12	24	37	49	62	74
Equivalent Tor Users	39.6k	79.2k	119k	158k	198k	238k

* Mean across 20 total simulations for each network scale.

IDS Validation Formal APT Model - NSCT

Phantom = Extension of Shadow

- 60 Tor networks using Tor v0.4.5.9
- Blade server cluster in which each blade contained identical hardware:
 - 0 1.25 TiB of RAM and
 - 0 4×8 core Intel Xeon E5-4627v2 CPUs (without hyper-threading support) running at 3.30 GHz.

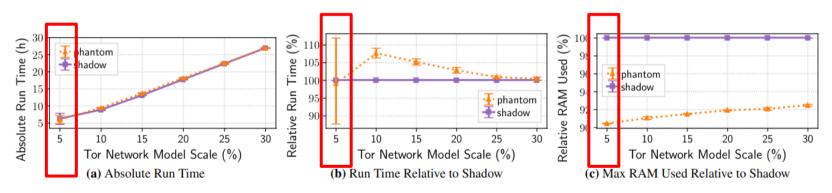


Figure 23: The time and memory required to complete each Tor network simulation in Phantom (using seccomp interception) and in Shadow's uni-process design as the network model scale increases. (b) and (c) show performance relative to Shadow's baseline.

Plan of the Presentation

- 1. Network Simulator-centric Compositional Testing (NSCT)
- 2. IDS Validation
- 3. Conclusion

Conclusion

- NCT/NSCT can find bugs and model attacks
 - 0 Probably lower cost
- Leverage LLM for automating attacks and model creation
- GUI

Planning réunion de groupe de travail par Défi

Date	Description
23/01/2023	First meeting of the working group
29/09/2023	Présentation des research results and discussion on demonstrators
13/05/2024	Présentation of démonstrateurs
*/11/2024	Présentation of more mature demonstrators

Who participates:

- Companies interested in the challenge
- Challenge Manager
- Researchers contributing to the challenge
- WSL
- Réseau Lieu

digital wallonia digital wallonia digital wallonia

Thank you for your attention