
Challenge 01 "Automation of
cybersecurity verification for cyber
physical systems"

Challenge 01 Working Group Meeting

https://cyberwal.be
https://cyberexcellence.be

Philippe Massonet, Coordinateur Scientifique
CETIC
Guillaume NGuyen, UNamur
Martin Vivian, UCLouvain
Denis Darquennes, CETIC
Christophe Crochet, John Aoga, UCLouvain

Date 13/05/2024

https://cyberwal.be/
https://cyberecellence/

Agenda

15:30-15:50 Improvements for stateful fuzzing Martin Vivian
(UCLouvain)

15:50-16:10 Identification of Cyber Physical System (CPS) & Orchestration of fuzzing
testing

Guillaume
Nguyen
(Unamur)

16:10-16:30 Automated cybersecurity testing with genetic algorithms Denis
Darquennes,
Philippe
Massonet
(CETIC)

16:30-16:50 Vérification of protocols via PFV (Protocol Formal Verification) Christophe
Crochet/John
Aoga,
UCLouvain

Challenge 01 "Automation of cybersecurity verification for cyber physical
systems"

• Summary of the Challenge:
• Penetration testing: still a very manual process, requires cybersecurity experts

• Ambition: automate (partly) the creation of penetration tests to make penetration tests
more accessible to companies (SMEs, large companies)

• Research Challenges:
○Automatic generation of functional cybersecurity tests (security architecture), use of

different generation techniques (to compare) for penetration tests:

○ Fuzzing techniques,
○ Generation of tests by genetic mutation

○ Generating tests from models
...

○Partial automation in the form of assistance with the creation process and definition of
penetration tests.

“Test Harness pattern” - Generation

Test Harness

Test Test Data Expected
result

Test case

SUT

Actual
results

Fuzzing Oracle

1) reads

3) collects

4) compares

Test report 5) writes
2) invokes

Monitor

Can be
Generated

White box
Grey box
Black box

Penetration tests
Functional tests

White box Grey box Black box Pen tests Func tests
Improvements for stateful
fuzzing

X X

Identification of Cyber Physical
System (CPS) & Orchestration
of fuzzing testing

X X X

Automated cybersecurity
testing with genetic
algorithms

X X

Vérification of protocols via
PFV (Protocol Formal
Verification)

X X

Overview of research problems

Improvements for stateful fuzzing

Martin Vivian, UCLouvain

Reminder

Fuzzing on State Machine

MITM

Each message have their grammar
Order of the message in this example, we must send M1' before M2' to reach S3

State machine

Template of message
for each state transition

Tool Introduction

data (copy-
pasting)

Build
FSM

Build
Template

Start
Proxy

Choose Fuzzing
method

Data from file

Data in XML format

<Trace></Trace> : session
<Input></Input> : data
<Output></Output> : data

Initially start to improve Autofuzz :
https://sourceforge.net/projects/autofuzz/

Finally keep UI and modify the rest

https://sourceforge.net/projects/autofuzz/

Process of the Tool
Template example
1:FA++—
2:FE6B++

Build State Machine

Integrated tool for
FSM

FlexFringe :
https://github.com/tud
elft-cda-lab/FlexFringe

Clustering for State Machine

Gather similar networking messages from the data to build a fsm based on this cluster

1) Preprocessing:
Find highest variable part (like crc, session id...) and don’t take in account for clustering

Example : FE+++++++A——-+++—- => “+” indicate high variablility

2) Header separation (clustering on header) :
Choose a header length for the clustering

Example : header = 4 for frame “AABBCCDD” => header part is AABB
Create separate cluster for size below
Create a separate cluster for unclusterized data

3) Algorithm used
Hiearchical Clustering algorithm :
(BirchLeaf clustering) : https://github.com/sbobek/smiling/blob/master/demo/src/main/java/smile/demo/vq/BIRCHDemo.java#L25

Link between State Machine and cluster

...

– We are at the state 4
– We receive an ouptut

message that match the
cluster ID 2 then we go to
the state 5

Cluster Id 2 should be
represented by the template
: AF++-C—++
And the message received
should be AFEBFCEEAA

If output are fuzz then the
message will be fuzzed
following the corresponding
template

Template and Fuzzing Strategy

Template :
– Since the fuzzer is in MitM we can modify the messages by following a template
– We need before to calculate the template for each cluster
– Distinction between constant value, strong and weak variable with Xi² (distribution for each

position in the frame).

Strategy :
– Don’t fuzz constant, less fuzzing for highest variable and high fuzzing for weak variable.

Template example: FE++++—— (red no fuzzing, yellow low probability to be fuzzed and
green higher probability.

– Fuzzing Function :

– Possibility to not fuzz all frame, select states to fuzz.

Information :
Distinction beween constant value, strong and weak variable with Xi².

FTP case study

- First case study to test our implementation
- Test on FTP server implementation (Open and compact FTP server version 1.2)
- https://sourceforge.net/projects/open-ftpd/files/open-ftpd/

Results
- Our tool was able to reproduce the crash from the papers
The insertion of "/r", "/n" or a space symbol in the middle of the parameters could crash the server; the removal of the
whole template variable part (i.e. sending a command without a parameter) could also result in the crash.

https://sourceforge.net/projects/open-ftpd/files/open-ftpd/

FSM : FTP

Template : FTP

Application to Industrial drone Case Study

Industrial protocol caracterised by
– CRC
– Session ID
– DateTime
– Telemetric, logs packets
– Header
– Black-box
– No always tuple input-output
– No text-interpretable protocol

Results on the case study

– Relevant State machine
– Relevant template to identify cluster and reusable for fuzzing

– Tools is enough good to create separate state for the drone commands
– For example, each time that we start the motors we go to the state 9.
– It gives the possibility to only fuzz specific control command without modifying

telemetries packet and get the good fuzzing template.

Attempt on the RTSP Protocol

- RTSP (Real Time Streaming Protocol) https://github.com/rgaufman/live555
- Protocol inside Profuzzbench : https://github.com/profuzzbench/profuzzbench
- When we launch Profuzzbench we find crash on RTSP
- But when we try to replay the frames we don't find the bugs
- Reason they fixe a session id in the code for the reproducible of results
- But that introduce a crash

https://github.com/rgaufman/live555
https://github.com/profuzzbench/profuzzbench

Next Steps and progress in maturity of results

– Test and adapt the tool for others case studies
– Improvement the quality of the template by detecting type (string, integer...)
– Find a heuristic to know in advance the number of clusters
– Detection about the dependencies between the messages (increment)
– Possibility to correct the model during the fuzzing phases
– Compare with dynamic execution

Test-based classification framework for CPS

Guillaume Nguyen, UNamur

18/04/2024
Rejection of paper
@FSE ‘24 Brasil

28/08/2023
Doctoral Symposium
@SPLC ‘23 Tokyo

9/02/2023
1st poster WGIS’23

15/12/2022
CyberExcellence -

Presentation on
fuzzing for CPS (ROS)

Survey on CPS
in industries

Challenges of
creating a legally
compliant CPS

Tool for fuzzing
CPS on the go

The survey is stuck due to a lack of responses from
industrial actors. We hoped to get at least 25
answers and we only have 8.

The research intended to identify the challenges related
to creating a legally compliant CPS using tests based on
official EU material. However, the final contribution of
the paper shifted from the creation of a matching tool for
industrial actors to help them identify relevant laws and
related (technical) material to a methodology critique of
the current legislation landscape.

We are currently designing a tool meant to be
embedded in a computer which could be carried to
perform onsite fuzzing. This tool would be used
through a visual interface based on models and
would be able to communicate on many channels.

Overview

Next steps - Survey

Preliminary suvey
Evaluative Case

Study

Research questions

Selection of a
model

Classification
Framework

Find clusters in the
various

implementation of
CPS across
industries

Next steps - Challenges of creating a legally compliant CPS

1. Finding a relevant legal text based on keywords
2. Access to cited material is not free of cost
3. Identifying the level of compliance with the legal text

reached after complying with related specifications
4. Establishing the relationship to other acts based on

the original one
5. Understanding technical requirements from legal texts

Automated cybersecurity testing with genetic algorithms

Denis Darquennes, Philippe Massonet

Défi 01: MUT4SEC - Test generation
for CPS security with Pynguin

Groupe de travail défi 01

https://cyberwal.be
https://cyberexcellence.be

Denis Darquennes, Philippe Massonet, Sébastien Dupont -
CETIC

https://cyberwal.be/
https://cyberecellence/

Plan

● Mut4sec - test generation for security
● The Context
● Case study: Control Center and Zone policies - infected vehicle

software - supply chain attack
● The Pynguin test generation (white box) - how it works
● Execution of tests - spoof:

○ zone policy assignation
○ zone policy reporting
○ vehicle speed reporting

● Description of the CPS
● Next steps : the test generation for ROS

MUT4SEC - Test generation for security
Test generation is based on genetic algorithms
● filter tests for selection of most pertinent usable tests
● using the Pynguin tool

Automated test generation to highlight security vulnerabilities
● in cyber physical systems (CPS) (challenge #1)
● using the ROS framework (part of the case study : the rover)

Rover case study method can be applied to other CPS (e.g.: railway
systems)

https://github.com/se2p/pynguin
https://docs.ros.org/en/rolling/index.html

Context

Zone Namur Zone Bruxelles

Incident
detectorControl center

Control center supervision
process:
1. Incident detected
2. Incident position
3. Adapt speed profile
4. Monitor speed / distance

→ Add Assertions: check
integrity of vehicle controls
(policy, speed)

(1
)

(2)

(3)

Protecting railway systems

(4)

Control Center and Zone policies
Integrity tests on threats:
● (A) Integrity: zone

policy sent is the one
received

● (B) Zone policy is
respected

● (C) Integrity:
monitored data
corresponds to real
data

● (D) Integrity:
monitoring data sent
is the same that is
received

● (E) Monitoring data
displayed is the same
as received data

Zone Namur Zone Bruxelles

Incident
detector

Control
center

(C)

(E)

(A) (B,D
)

Control Center and Zone policies
Integrity tests on threats:
● (A) Integrity: zone policy sent is

the one received => attack
on registered zone_policy

● (B) Zone policy is respected
=> attack on
communication of
speed_policy

● (C) Integrity: monitored data
corresponds to real data =>
attack on effective speed

● (D) Integrity: monitoring data
sent is the same that is
received => equivalent to
(B)

● (E) Monitoring data displayed
is the same as received data
=> not considered

Zone Namur Zone Bruxelles

Incident
detector

Control
center

(C)

(E)

(A) (B,D
)

Attack: infected vehicle software
Protecting railway systems against
● Infection through supply chain attack

○ e.g. Usage of untrustworthy 3rd party software
● Generating three attacks on the train:

○ (A) spoof zone_policy assignation
○ (B,D) spoof zone_policy reporting
○ (C) spoof vehicle_speed reporting

Zone Namur Zone Bruxelles

Incident
detector

Control
center

(C)

(A) (B,D
)

Supply chain attacks - #1 threat in 2030

ENISA - Threat Landscape for Supply Chain Attacks (2021)

European Cyber Resilience Act – European Parliament briefing (2023)

https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(2022)739259_EN.pdf

Using 3rd parties … When things go
wrong…SolarWinds Supply Chain Attack (2020)

SolarWinds, a company that provides IT management and monitoring software,
suffered a cyberattack where attackers compromised its software development process.

The attackers inserted a backdoor into SolarWinds' Orion software during the
development phase. This compromised software was then distributed to SolarWinds'
customers, including government agencies, critical infrastructure entities, and
businesses in various countries. Attackers were stayed undetected for at least 6
months, and maybe up to 14 months

Pynguin - Automated Unit Test Generation

S. Lukasczyk and G. Fraser, "Pynguin: Automated Unit Test Generation for Python," 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), Pittsburgh, PA, USA, 2022, pp. 168-172, doi: 10.1145/3510454.3516829.

Add
(integrity)
assertions Tester

https://arxiv.org/abs/2202.05218

Test generation - Run Pynguin on Vehicle

10

1

5

7

2

8

Test generation - Run Pynguin on Vehicle

generated by Pynguin

Test generation - Run Pynguin on Control
Center

Test generation - Run Pynguin on Control
Center

Test generation - Run Pynguin on Control
Center

Test generation - Pynguin output -
Coverage

vertical orange
line: not covered
by any generated
test
vertical green
line: covered, test
generated for it

Branch
coverage

assertion
added by

tester

Test generation - Pynguin output
Example list of 5 generated tests - tests usable … or not !

Test not useful because there is no assertion generated

Test generation - Pynguin output
List of generated tests

Test useful but vehicle 1 line can be deleted

Test generation - Pynguin output
List of generated tests

Test not useful because the incident that could be tested
(zone charleroi) is not referenced

Test generation - Pynguin output
List of generated tests

Test useful but tests two times the same speed (30). Could be simplified.
4 last lines are not useful and could be deleted. Code level reasoning.

Test generation - Pynguin output
List of generated tests

Test useful but some lines are not useful.

Execution of tests - vehicle non infected
Apply following test to control center code:

Execution of tests - vehicle infected
Apply following test to control_center code:

+50

Infected vehicle software
Intermediate attack:

● magnify the vehicle speed policy change,
● spoof the speed policy readings for the control center.

-50
+50

Execution of tests - vehicle infected
Apply following test to control center code:

speed_policy_respected
=
self.vehicle.get_speed()
<= new_speed_policy

+50
-50

Execution of tests - vehicle infected
Advanced attack:

● magnify the vehicle speed policy change,
● spoof the speed policy readings for the control center.
● spoof speed readings for the control center

+50
-50-50

Execution of tests - external observer
Advanced attack:

● magnify the vehicle speed policy change,
● spoof the speed policy readings for the control center.
● spoof speed readings for the control center

+50
-50-50

Zone Namur Zone Bruxelles

Incident
detector

Control
center

(C)

(B,D
)

External observer
(speed camera)

(A)

Execution of tests - summary
● user express security invariants (properties)

○ security policies are implemented through security invariants
● pynguin generates assertions to verify they are respected - or not
● with corresponding generated tests,

○ on non infected code => test successful
○ on infected code => test failure

Test report

Test / Assertion A
Integrity: zone
policy sent is

the one
received

B
Zone policy is

respected

C
Integrity:

monitored data
corresponds to

real data

D
Integrity:

monitoring data
sent is the

same that is
received

(E)
Monitoring data
displayed is the

same as
received data

Test 1 X Out of scope

Test 2 X X

… External
observer

Cyber Lab - Cyber Physical Systems (CPS)

65

Donkey Car
ChassisUltrasonic Distance

Sensor

RaspBerry Pi /
Jetson Nano

Brain

Wide Lens Camera
Tracking

https://www.donkeycar.com/

Next steps - Test generation for ROS
https://www.ros.org/

ROS-Industrial is an open-source project that
extends the advanced capabilities of ROS to

manufacturing automation and robotics.
https://rosindustrial.org

An open-source space robotics framework for developing
flight-quality robotics and autonomous space systems

https://space.ros.org/

https://www.ros.org/
https://rosindustrial.org/about/description/
https://space.ros.org/

Cyber Lab - Cyber Physical Systems (CPS)

67

Control Center

V2I

V2V

V2V: Vehicle to vehicle
V2I: Vehicle to
infrastructure

68

Cyber Lab - Cyber Physical Systems (CPS)

Next steps - Test generation for ROS

https://github.com/se2p/pynguin/issues/56

https://github.com/se2p/pynguin/issues/56

Conclusions and next steps
● Generation of integration tests for the use case
● Generation of security tests based on control variables introduced

inside code

● Problem with ROS for test generation
● For a same coverage level, generated tests are not similar
● Implement assertions in place of variables
● Generate tests for all assertions ? - Does it generate the right

tests ? Are there missing tests, and able to discover vulnerabilities ?
What is the coverage level ?

● incorporate (how?) a fuzzer iot obtain more tests ?
Write

assertions
(security

architecture
specification)

Generate
tests with
coverage
(Pynguin)

Execution of
human

selected
generated

tests

Create test
report

Further reading

● MITRE -
DELIVER UNCOMPROMISED: SECURING CRITICAL SOFTWARE SUPPLY
 CHAINS PROPOSAL TO ESTABLISH AN END-TO-END FRAMEWORK FO
R SOFTWARE SUPPLY CHAIN INTEGRITY
 (2021)

● ENISA - Good Practices for Supply Chain Cybersecurity
● ROS Robotics Companies list

https://www.mitre.org/sites/default/files/2021-11/prs-21-0278-deliver-uncompromised-securing-critical-software-supply-chain.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-21-0278-deliver-uncompromised-securing-critical-software-supply-chain.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-21-0278-deliver-uncompromised-securing-critical-software-supply-chain.pdf
https://www.enisa.europa.eu/publications/good-practices-for-supply-chain-cybersecurity
https://github.com/vmayoral/ros-robotics-companies

PFV – Protocol Formal Validation
By Christophe Crochet & John Aoga & Axel Legay

73

Plan
1. Network Simulator-centric Compositional Testing (NSCT)

2. IDS Validation

3. Conclusion

74

Network centric Compositional Testing (NCT)
● Extension of Network-centric Compositional Testing (NCT)

○ by Kenneth McMillan

75

Network centric Compositional Testing (NCT)
● Extension of Network-centric Compositional Testing (NCT)

○ by Kenneth McMillan

RFC9000

...

Set of
requirements

= generic QUIC
formal

specification

Refinement of some
requirements = tests

e.g only allow
generation of X frame

Ivy QUIC
implementation
(server or client)

76

Network centric Compositional Testing (NCT)
● Random Process

Network centric Compositional Testing (NCT)
● Testing - Previous Works

77

1 Violation of the
specification

2 Feature not implemented

3 Internal errors and crashes

35 mainerrors developed
4 Problem in the draft

Network centric Compositional Testing (NCT)
● Testing - Previous Works

78

Server

Generic

Unknown

Transport
parameter

errors
Violation of the

draft

Invalid field

Network centric Compositional Testing (NCT)
● Testing - Previous Works

79

ClientNo migration

80

Network Simulator-centric Compositional
Testing (NSCT)

Network Simulator-centric Compositional
Testing (NSCT)

● Testing - Previous Works

81

82

Network centric Compositional Testing (NCT)
● Attack models

RFC9000

...

Set of
requirements

= generic QUIC
formal

specification

Illegal/Malicious
requirements

addition/modification

Ivy QUIC
attacker

83

Network centric Compositional Testing (NCT)
● Attack models - Previous Works:

• Man In the Middle:
• lsquic vulnerable with version negociation attack

1. lsquic start the handshake with version 0xff000022 (draft-34)
2. then we propose the 0xff00001d version (draft-29).
3. It responds us by resending an Initial packet with incorrect

checksum.

• DoS - Packet/frame manipulation:
• NEW_CONNECTION_ID frame - quant
• Malicious QUIC frame injection - picoquic

84

Network centric Compositional Testing (NCT)
● Attack models - Previous Works:

• Man In the Middle:
• lsquic vulnerable with version negociation attack

1. lsquic start the handshake with version 0xff000022 (draft-34)
2. then we propose the 0xff00001d version (draft-29).
3. It responds us by resending an Initial packet with incorrect

checksum.

• DoS - Packet/frame manipulation:
• NEW_CONNECTION_ID frame - quant
• Malicious QUIC frame injection - picoquic

Paper in Preparation
+ Timing attacks

85

Network Simulator-centric Compositional
Testing (NSCT)

● Summary:

o NCT:

■ Model-Based Formal Specification Adversarial testing (Black Box Endpoint)

■ Component Based

■ Randomized Process + Non-Deterministic

■ Efficient to find errors in implementation and ambiguity in specification

■ Efficient to find vulnerabilities in implementation

86

Network Simulator-centric Compositional
Testing (NSCT)

● Summary:

o NSCT:

• Model-Based Formal Specification Adversarial testing in NS (Grey Box Endpoint)

• Component Based

• Randomized Process + Deterministic + Reproducible + online debugging

• Enable Timing based attacks

• ~ Might need implementation of syscalls

87

Plan of the Presentation
1. Network Simulator-centric Compositional Testing (NSCT)

2. IDS Validation

3. Conclusion

88

IDS Validation
Formal APT Model● APT = Advanced Persistent Threat

o Infiltration

o Escalation and Lateral Movement

o Exfiltration

o APT Attack Tree (for multiple RFCs – Attacks: HTTP, FTP, ...)

o Formal APT Attack Tree Nodes/Components !

• Web based nodes only (no usb, social engineering, ...)

• Formal Attack "API"

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

89

IDS Validation
Formal APT Model

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS

90

IDS Validation
Formal APT Model

https://dl.acm.org/doi/pdf/10.1145/3359986.3361208
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606252

IDS

91

IDS Validation
Formal APT Model - NSCT

Phantom = Extension of Shadow

• 60 Tor networks using Tor v0.4.5.9
• Blade server cluster in which each blade contained identical hardware:

o 1.25 TiB of RAM and
o 4×8 core Intel Xeon E5-4627v2 CPUs (without hyper-threading support) running at 3.30 GHz.

92

Plan of the Presentation
1. Network Simulator-centric Compositional Testing (NSCT)

2. IDS Validation

3. Conclusion

93

Conclusion
● NCT/NSCT can find bugs and model attacks

o Probably lower cost

● Leverage LLM for automating attacks and model creation

● GUI

Planning réunion de groupe de travail par Défi

Date Description

23/01/2023 First meeting of the working group

29/09/2023 Présentation des research results and
discussion on demonstrators

13/05/2024 Présentation of démonstrateurs

*/11/2024 Présentation of more mature demonstrators

Who participates:
• Companies interested in the challenge
• Challenge Manager
• Researchers contributing to the challenge
• WSL
• Réseau Lieu

Thank you for your
attention

	Challenge 01 "Automation of cybersecurity verification for cybe
	Agenda
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	FSM : FTP
	Template : FTP
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Défi 01: MUT4SEC - Test generation for CPS security with Pyngui
	Plan
	MUT4SEC - Test generation for security
	Context
	Control Center and Zone policies
	Control Center and Zone policies (2)
	Attack: infected vehicle software
	Supply chain attacks - #1 threat in 2030
	Using 3rd parties … When things go wrong…
	Pynguin - Automated Unit Test Generation
	Test generation - Run Pynguin on Vehicle
	Test generation - Run Pynguin on Vehicle (2)
	Test generation - Run Pynguin on Control Center
	Test generation - Run Pynguin on Control Center (2)
	Test generation - Run Pynguin on Control Center (3)
	Test generation - Pynguin output - Coverage
	Test generation - Pynguin output (2)
	Test generation - Pynguin output (3)
	Test generation - Pynguin output (4)
	Test generation - Pynguin output (5)
	Test generation - Pynguin output (6)
	Execution of tests - vehicle non infected
	Execution of tests - vehicle infected
	Infected vehicle software (5)
	Execution of tests - vehicle infected (2)
	Execution of tests - vehicle infected (3)
	Execution of tests - external observer
	Execution of tests - summary
	Test report
	Cyber Lab - Cyber Physical Systems (CPS)
	Next steps - Test generation for ROS
	Cyber Lab - Cyber Physical Systems (CPS) (2)
	Cyber Lab - Cyber Physical Systems (CPS) (3)
	Next steps - Test generation for ROS (2)
	Conclusions and next steps
	Further reading
	Diapo 72
	Plan (2)
	Network centric Compositional Testing (NCT)
	Network centric Compositional Testing (NCT) (2)
	Network centric Compositional Testing (NCT) (3)
	Network centric Compositional Testing (NCT) (4)
	Network centric Compositional Testing (NCT) (5)
	Network centric Compositional Testing (NCT) (6)
	Network Simulator-centric Compositional Testing (NSCT)
	Network Simulator-centric Compositional Testing (NSCT) (2)
	Network centric Compositional Testing (NCT) (7)
	Network centric Compositional Testing (NCT) (8)
	Network centric Compositional Testing (NCT) (9)
	Network Simulator-centric Compositional Testing (NSCT) (3)
	Network Simulator-centric Compositional Testing (NSCT) (4)
	Plan of the Presentation
	IDS Validation Formal APT Model
	IDS Validation Formal APT Model (2)
	IDS Validation Formal APT Model (3)
	IDS Validation Formal APT Model - NSCT
	Plan of the Presentation (2)
	Conclusion
	Diapo 94
	Diapo 95

